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2. Abstract and key terms 

 Spatiotemporal variability during gait is linked to fall risk and could be monitored using 

wearable sensors. Although many users prefer wrist-worn sensors, most applications position at 

other sites. We developed and evaluated an application using a consumer-grade smartwatch 

inertial measurement unit (IMU). Young adults (N = 41) completed seven-minute conditions of 

treadmill gait at three different speeds. Single-stride outcomes (stride time, length, width, and 

speed) and spatiotemporal variability (coefficient of variation of each single-stride outcome) 

were recorded using an optoelectronic system, while 232 single- and multi-stride IMU metrics 

were recorded using an Apple Watch Series 5. These metrics were input to train linear, ridge, 

support vector machine (SVM), random forest, and extreme gradient boosting (xGB) models of 

each spatiotemporal outcome. We conducted Model × Condition ANOVAs to explore model 

sensitivity to speed-related responses. xGB models were best for single-stride outcomes (relative 

mean absolute error [% error]: 7–11%; intraclass correlation coefficient [ICC2,1]: 0.60–0.86) and 

SVM models were best for spatiotemporal variability (% error: 18–22%; ICC2,1 = 0.47–0.64). 

Spatiotemporal changes with speed were captured by these models (Condition: p < 0.00625). 

Results support the feasibility of monitoring multi-stride spatiotemporal parameters using a 

smartwatch IMU and machine learning. 

Keywords: Smartwatch, Spatiotemporal variability, Inertial measurement unit, Machine learning, 

Gait, Wearable sensors  
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3. Introduction 

 Walking-related falls are linked to the natural motor fluctuations that exist from stride to 

stride 16. Gait investigations have found that older individuals with higher stride time variability 

17, higher stride length variability 26, and very low or very high step width variability 6 have higher 

fall risk. The strong link between spatiotemporal variability in gait and fall risk calls for real-world 

evaluation methods that enable and support community-based monitoring. 

 Spatiotemporal gait evaluations have traditionally relied on in-lab or in-clinic methods. 

These include using marker-based optoelectronic motion capture 46, video-based optoelectronic 

motion capture 23,39, and pressure mats 4. These approaches, while considered valid and reliable 

for spatiotemporal analyses, are expensive (optoelectronic systems), require time-consuming 

measurement (marker-based optoelectronic systems), and restrict the area in which gait can be 

measured (all approaches listed above). A large motion capture volume, beyond that available 

from these approaches, is needed to capture 50–150 continuous strides to reliably measure 

spatiotemporal variability during overground walking 24,37. Thus, alternative methods are needed 

for inexpensive, continuous, and large-volume evaluations that are required in community 

settings.  

Wearable devices may meet these needs, with two potential options being instrumented 

insoles and body-worn inertial measurement units (IMUs) 7. Instrumented insoles contain 

embedded pressure sensors and/or IMUs that directly measure temporal gait features via foot 

contact events 40, producing highly accurate detection of heel strikes, toe offs, and step count 

3,10,30. Several open challenges exist in the use of instrumented insoles, including user comfort, 
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compatibility in different footwear, and usability in different environmental conditions 40. An 

alternative option to insoles are body-worn IMUs, which have been used to calculate spatial and 

temporal gait features 2,33,35,36,41,44. Using a single foot IMU, Rebula et al. 35 developed an 

algorithm combining stride segmentation, drift correction, and foot trajectory formation that, 

relative to optoelectronic motion capture, predicted stride length and duration with a 1% 

difference and stride-to-stride length and width variability with a 4% difference. Washabaugh 

and colleagues 44 used foot and ankle IMUs, finding that spatiotemporal gait parameters were 

measured better by the foot configuration, were concurrently valid relative to an instrumented 

treadmill, and were repeatable between days. Using a single trunk IMU, de Ridder and colleagues 

36 demonstrated validity and intra-day reliability in measuring gait speed, cadence, stride length, 

and stride time. IMUs can also be instrumented on multiple lower limb segments and combined 

with biomechanical constraints to model foot trajectories and extract spatiotemporal parameters 

2,41. A major challenge with each of these IMU approaches is that the sensors are not positioned 

on locations preferred by most individuals, as exemplified in a recent investigation of persons 

with Parkinson’s disease 32, questioning the feasibility of these IMU positions for long-term 

continuous monitoring.  

As a wrist-based IMU has been found to be preferred as a single-sensor solution 32, users 

may be more compliant to long-term monitoring with a smartwatch approach. Smartwatches are 

widely available and continue to grow in popularity as a smart wearable device due, in part, to 

perceived usefulness, enjoyment, and ease of use 31. In conjunction with machine learning 

techniques, wrist-based IMUs have been used for gait recognition 21, freezing of gait detection 

28,32, fall detection 43, and spatiotemporal feature estimation 12. For example, Erdem and 
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colleagues 12 used regression-based machine learning on linear acceleration and angular velocity 

features of smartwatches worn on both wrists to predict step length, swing time, and stance time 

to within 5.3 cm, 0.05 s, and 0.09 s, respectively. However, to the best of our knowledge, no 

application currently exists to predict spatiotemporal variability during gait using a single 

smartwatch, which is the most natural use case for this technology. Our objective was to develop 

and evaluate the accuracy of this application, using regression-based machine learning on 

features engineered from a single smartwatch IMU. 

4. Materials and Methods 

4.1 Participants 

 Young healthy adults (N = 41, 22 females; age: 25 ± 3 years, 19–31 years) were recruited 

to the study from the Ottawa, Canada region as a convenience sample. Participants were free 

from musculoskeletal injuries in the preceding six months and from known chronic 

neurological/orthopaedic disorders. All participants provided their written informed consent to 

the study. The study followed the Declaration of Helsinki and was approved by the University of 

Ottawa Research Ethics Board (H-01-21-6261). 

4.2 Procedure 

Each participant was instrumented for motion capture with an optoelectronic system and 

with a smartwatch. The optoelectronic system comprised 11 passive infrared cameras (Vantage, 

Vicon, Oxford, UK) and spherical retroreflective markers. Calibration and tracking markers were 

placed on each participant’s body according to a full-body marker set for gait 2,34 with rigid-body 

clusters of four markers on the trunk, arms, forearms, thighs, and shanks. Marker positions were 
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sampled at 60 Hz using motion capture software (Nexus 2.11, Vicon, Oxford, UK). Each participant 

wore a smartwatch on their left wrist (Apple Watch Series 5, Apple Inc., Cupertino, USA). 

Tridimensional gravity-corrected linear accelerations (i.e. free accelerations), raw linear 

accelerations (i.e. raw accelerations), angular velocities, and orientations (Euler angles) were 

accessed from the Apple Core Motion API, via the HemiPhysioData app on watchOS, and were 

sampled at a requested frequency of 40 Hz. 

Following a static calibration in standing pose, calibration markers were removed and 

tracking markers and smartwatch IMU data were sampled while the participant walked on a 

treadmill (Horizon Fitness, WI, USA). Preferred gait speed was identified according to the 

procedure of Dingwell and Marin 11. After establishing preferred gait speed, the participant 

completed three randomized speed conditions: preferred speed (Preferred), 70% of preferred 

speed (Slow), and 130% of preferred speed (Fast). Gait speed alters spatiotemporal variability 22, 

so the speed conditions were a method of exploring the sensitivity of the smartwatch IMU 

application. Each condition began with a vertical jump to synchronize the optoelectronic and 

smartwatch data streams and was followed by seven minutes of gait to record at least six minutes 

of consecutive and constant-speed strides. We determined during piloting that this duration was 

needed to confidently record a minimum of 150 steady-state strides for stable measurements of 

motor variability 37. 

4.3 Data analysis 

4.3.1 Optoelectronic data processing 
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 Using Vicon Nexus, marker trajectories were labelled, gap-filled with a Woltring spline 45, 

and low-pass filtered at 10 Hz. Processed marker trajectories were imported into OpenSim v4.2 

38 to simulate full-body motion 2. A generic skeletal model 34 was scaled to the participant by the 

anatomical marker positions in the static calibration and an inverse kinematic analysis was 

performed by minimizing the sum of weighted squared distance errors between pairs of 

experimental and model markers. Marker weights were manually selected to minimize root-

mean-square error between marker pairs; marker weights were equal except for weights of 

double magnitude for markers on the acromion processes, anterior and posterior superior iliac 

spines, and lateral malleoli. Root-mean-square errors achieved following scaling and inverse 

kinematics were confirmed to be within the recommended range 18. 

Modelled right calcaneus kinematics were subsequently analyzed in Matlab (R2021b, The 

MathWorks Inc., Natick, MA, USA). We partitioned individual right strides by identifying right heel 

strike events from the Euclidean norm of the right calcaneus linear velocity; events were 

identified as the local minima that followed a local maximum 2. These heel strike events and the 

modelled right calcaneus anteroposterior and mediolateral positions were then used to calculate 

stride time, length, width, and speed for the 200 strides following the initial 30 seconds of gait, 

during which time the participant was assumed to have reached steady state. We calculated the 

stride-to-stride coefficient of variation (CV) for each stride outcome to measure spatiotemporal 

variability. 

4.3.2 Smartwatch data processing 
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 Raw inertial data from the smartwatch were sorted by timestamps, then resampled to 60 

Hz to correct inconsistent time intervals between samples and to match the optoelectronic 

sampling frequency. Smartwatch data were synchronized to optoelectronic data by the peak 

Euclidean norm of the smartwatch linear acceleration and of the optoelectronic-modelled right 

calcaneus linear velocity upon landing from the vertical jump. Synchronized smartwatch data 

were then partitioned into individual strides by the optoelectronic-identified right heel strike 

events and time-normalized to 101 points per stride. The time-normalized stride and continuous 

formats of the smartwatch data series were retained for the same 200 strides as for the 

optoelectronic data. Smartwatch data included 16 IMU Series, representing the 4 Inertial signals 

(raw acceleration, free acceleration, angular velocity, Euler angle) and 4 Components of each 

Inertial signal (X, Y, Z, Euclidean norm of XYZ Components). From each Series, we extracted 16 

Metrics of interest (Table 1). During data exploration for each Metric, we identified many 

extreme outliers for modulation and standard deviation (SD) of modulation, on the X, Y, and Z 

Components of each Inertial signal. These were produced by signal means approaching zero and 

were excluded from further analysis. 

Table 1. Smartwatch Metrics, calculated for each Component (X, Y, Z, Euclidean norm) of each Inertial signal (free 
acceleration, raw acceleration, angular velocity, Euler angle). 

Metric Description 

mean signal mean for time-normalized stride 
max signal maximum for time-normalized stride 
min signal minimum for time-normalized stride 
range signal range for time-normalized stride 
modulation signal coefficient of variation for time-normalized stride 
max_loc temporal location of signal maximum for time-normalized stride (i.e. % of stride) 
min_loc temporal location of signal minimum for time-normalized stride (i.e. % of stride) 
SD of max * variability of “max”, measured as the standard deviation across time-normalized strides 
SD of min * variability of “min”, measured as the standard deviation across time-normalized strides 
SD of range * variability of “range”, measured as the standard deviation across time-normalized strides 
SD of 
modulation * 

variability of “modulation”, measured as the standard deviation across time-normalized 
strides 
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SD of max_loc * variability of “max_loc”, measured as the standard deviation across time-normalized strides 
SD of min_loc * variability of “min_loc”, measured as the standard deviation across time-normalized strides 
meanSD mean standard deviation: standard deviations were first calculated across time-normalized 

strides for each time point and the mean of these standard deviations was then computed  
λmax maximum finite-time short-term Lyapunov exponent, a measure of signal local dynamic 

stability 47; calculated from the continuous series normalized to 20,000 points (100 per stride 
on average), represented as a state space with 3 embedding dimensions and a lag of 10 
points over an expansion range of 0–0.5 strides 

SaEn sample entropy, a measure of signal regularity 9; calculated from the continuous series with 
2 embedding dimensions, a tolerance of 0.15, and a scale factor of 4 

* standard deviation computed across time-normalized strides 

4.3.3 Model development and evaluation 

 Before developing models of spatiotemporal variability, we first sought to make single-

stride predictions as these outcomes are more common in prior applications (e.g., 12) and are 

available from consumer mobile devices using proprietary algorithms. Models of stride time, 

length, width, and speed were developed from smartwatch IMU Metrics taken from a single 

stride (mean, max, min, range, modulation, max_loc, min_loc; n = 112 Metrics). Accounting for 

excluded data (modulation of the X, Y, and Z Components, n = 12 Metrics), a total of 100 Metrics 

were used to develop single-stride models. Models of spatiotemporal variability were developed 

from all smartwatch IMU Metrics, including the across-stride means of single-stride smartwatch 

IMU Metrics and the multi-stride smartwatch IMU Metrics (n = 256 Metrics). After modulation 

and SD of modulation were excluded for the X, Y, and Z Components (n = 24 Metrics), this left 

232 Metrics for developing models of spatiotemporal variability. 

Smartwatch IMU Metrics and optoelectronic-measured spatiotemporal variability were 

available for 117 of 123 trials, producing 100 Metrics × 23,400 values for each single-stride 

outcome and 232 Metrics × 117 values for each spatiotemporal variability outcome. Principal 

component analysis was conducted on the smartwatch IMU inputs to each outcome group 
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(single-stride outcomes, spatiotemporal variability) to extract the principal components that 

explained 90% of variation in each dataset. From each loading matrix, we weighted Metric 

loadings by the explained variance of each principal component, calculated the weighted mean 

of absolute loadings across principal components for each Metric, then identified the 20 Metrics 

with the highest weighted mean loadings. These top 20 Metrics were the regression model inputs. 

These data were split into 5 repeated folds, each consisting of model training (80%) and testing 

(20%) sets, where one set contained all trials for a participant. Repeated folds were used to 

evaluate model performance. For each repeated fold, we trained (i) linear, (ii) ridge, (iii) support 

vector machine (SVM), (iv) random forest (RF), and (v) extreme gradient boosting (xGB) 

regressors. Model inputs were z-scaled prior to training ridge and SVM regressors. Model training 

and testing were performed on a desktop computer containing one Radeon RX Vega GPU (8 Gb), 

one AMD Ryzen 7 2700x CPU (8 cores, 16 threads, 3.7 GHz), and 32 Gb of RAM. As SVM training 

exceeded the computational memory capacity when using all 200 strides to predict stride 

outcomes, we instead trained these models on only the first 50 strides per trial. We tuned 

hyperparameters of models (ii)–(v) on the training set by a randomized search of up to 100 

iterations with 5-fold cross-validation, where 20% of the training set was used as a validation set 

(hyperparameter search ranges are provided in Appendix A and final hyperparameter-tuned 

models are provided in Appendix B). As xGB models tended to overfit, we terminated fitting early 

if test set accuracy did not improve for 10 consecutive epochs. Model accuracy was evaluated on 

the test set of each repeated fold by calculating the coefficient of determination (R2) and mean 

absolute error (MAE) between measured and predicted values.  

4.4 Statistical analysis 
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Measured and predicted stride outcomes (across-stride mean for a given trial) and 

spatiotemporal variability were evaluated for consistency by computing two-way random 

intraclass correlation coefficients (ICC2,1), evaluated for agreement by computing bias and 95% 

limits of agreement (LOA95%), and visualized using Bland–Altman plots. ICC2,1 values less than 0.40, 

from 0.40 to 0.59, from 0.60 to 0.74, and greater than or equal to 0.75 were interpreted as poor, 

fair, good, and excellent consistency, respectively 8. Sensitivity of model predictions to within-

subject changes in gait speed was evaluated by performing two-way repeated measures ANOVAs. 

ANOVAs tested for main effects and interactions of Condition (70%, 100%, 130% preferred speed) 

and Model (Measured, Linear, Ridge, SVM, RF, xGB). Greenhouse–Geisser corrections were 

applied when sphericity was violated; simple contrasts were made post-hoc relative to 100% 

preferred speed for Condition effects and relative to Measured values for Model effects. 

Statistical significance for all analyses was set at p < 0.00625 to adjust for the eight 

spatiotemporal outcomes (i.e. p < 0.050/8). 

5. Results 

5.1 Regression models  

 Table 2 lists the top 20 smartwatch IMU Metrics selected as inputs to the stride 

outcome and spatiotemporal variability models. Accuracy of stride outcome models is displayed 

in Figure 1. These predictions were generally best using xGB, with R2 = 0.61 ± 0.09 and MAE = 

0.07 ± 0.01 s for stride time, R2 = 0.39 ± 0.20 and MAE = 0.13 ± 0.03 m for stride length, R2 = 

0.46 ± 0.14 and MAE = 0.06 ± 0.01 m for stride width, and R2 = 0.69 ± 0.08 and MAE = 0.14 ± 

0.02 m/s for stride speed. MAE values corresponded to relative errors of 7–11%. 
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Spatiotemporal variability calculated from xGB-predicted stride outcomes was highly 

inaccurate, with MAE of 1.38–3.98% and relative errors of 63–272%. 

Table 2. Smartwatch IMU metrics selected as regression inputs. Metrics were selected by the largest average 
absolute weighted load onto principal components extracted via principal component analysis. 

 Inertial signal Axis Metric 

Stride outcome 
model 

Angular velocity Z range 
Raw linear acceleration Y range 
Angular velocity Norm mean 
Raw linear acceleration Z range 
Orientation Y range 
Raw linear acceleration X mean 
Angular velocity Z mean 
Raw linear acceleration Y maximum 
Raw linear acceleration Y minimum 
Angular velocity Z maximum 
Raw linear acceleration Z maximum 
Raw linear acceleration Norm maximum 
Raw linear acceleration Norm mean 
Angular velocity Norm maximum 
Angular velocity Y range 
Angular velocity Norm range 
Free linear acceleration X mean 
Free linear acceleration Norm mean 
Free linear acceleration Norm maximum 
Angular velocity Y minimum 

Spatiotemporal 
variability 
model 

Raw linear acceleration Y range 
Raw linear acceleration Norm mean 
Raw linear acceleration Y meanSD 
Angular velocity Norm meanSD 
Raw linear acceleration Y maximum 
Raw linear acceleration Z maximum 
Free linear acceleration Norm maximum 
Raw linear acceleration Norm maximum 
Raw linear acceleration X maximum 
Raw linear acceleration Y minimum 
Angular velocity Norm mean 
Raw linear acceleration Norm meanSD 
Raw linear acceleration Z range 
Orientation Z range 
Raw linear acceleration X mean 
Orientation X range 
Angular velocity Z maximum 
Angular velocity Z minimum 
Orientation Y range 
Angular velocity X meanSD 

Norm: Euclidean norm 
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Figure 1. Accuracy of regression models at predicting stride outcomes from smartwatch inertial measurement unit 
features. Accuracy metrics are the coefficient of determination (R2: top), mean absolute error (MAE: middle), and 
relative error (% error: bottom). MAE is expressed in seconds (stride time), metres (stride length, stride width), and 
metres/second (stride speed). Models evaluated were linear, ridge, support vector machine (SVM), random forest 
(RF), and extreme gradient boosted (xGB) regressors. 

Spatiotemporal variability was much more accurately predicted by separate, dedicated 

models (Figure 2). These predictions were generally best using SVM, with R2 = 0.35 ± 0.18 and 

MAE = 0.38 ± 0.08% for stride time CV, R2 = 0.52 ± 0.15 and MAE = 0.42 ± 0.13% for stride length 

CV, R2 = 0.42 ± 0.11 and MAE = 0.55 ± 0.16% for stride width CV, and R2 = 0.38 ± 0.24 and MAE = 

0.28 ± 0.09% for stride speed CV. MAE values corresponded to relative errors of 18–22%.  
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Figure 2. Accuracy of regression models at predicting spatiotemporal variability from smartwatch inertial 
measurement unit features. Accuracy metrics are the coefficient of determination (R2: top), mean absolute error 
(MAE: middle), and relative error (% error: bottom). MAE is expressed as a percentage. Models evaluated were 
linear, ridge, support vector machine (SVM), random forest (RF), and extreme gradient boosted (xGB) regressors. 
CV = coefficient of variation. 

 

5.2 Concurrent validity and sensitivity of predictions 

 Relative to measured values, xGB predictions of stride outcomes had good-to-excellent 

consistency (ICC2,1: 0.60–0.86) and SVM predictions of spatiotemporal variability had fair-to-good 

consistency (ICC2,1: 0.47–0.64) (Table 3). Bland–Altman plots (Figures 3–4) revealed that 

predictions were not biased on average (i.e. the LOA95% band between the lower and upper limits 

included zero), although high-variability cases were typically underestimated. 

Table 3. Consistency (intraclass correlation coefficients [ICC2,1]) and agreement (bias, 95% limits of agreement 
[LOA95%]) of smartwatch-based predictions for stride outcomes (using extreme gradient boosting) and for 
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spatiotemporal variability (using support vector machines) relative to optoelectronic-measured values. 
Spatiotemporal variability was measured by the coefficient of variation (CV). 

Variable ICC2,1 Bias LOA95% 

Lower Upper 

Stride time (s) 0.86 0.00 -0.16 0.16 
Stride length (m) 0.60 0.01 -0.33 0.34 
Stride width (m) 0.60 0.00 -0.15 0.16 
Stride speed (m/s) 0.84 0.01 -0.34 0.36 

Stride time CV (%) 0.54 0.04 -1.07 1.16 
Stride length CV (%) 0.64 -0.07 -1.29 1.15 
Stride width CV (%) 0.57 -0.10 -1.69 1.48 
Stride speed CV (%) 0.47 -0.03 -0.97 0.91 
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Figure 3. Scatter and Bland–Altman plots of optoelectronic-measured and smartwatch extreme gradient boosting-
predicted stride outcomes. Bland–Altman plot lines indicate bias (solid black) and 95% limits of agreement (dotted 
black). 
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Figure 4. Scatter and Bland–Altman plots of optoelectronic-measured and smartwatch support vector machine-
predicted spatiotemporal variability. Bland–Altman plot lines indicate bias (solid black) and 95% limits of 
agreement (dotted black). 
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Condition main effects revealed a general pattern of shorter-duration, longer, wider, 

faster, and less variable strides with increased preferred speed (stride time: p < 0.001, η2 = 0.91; 

stride length: p < 0.001, η2 = 0.90; stride width: p < 0.001, η2 = 0.90; stride speed: p < 0.001, η2 = 

0.90; stride time CV: p < 0.001, η2 = 0.83; stride length CV: p < 0.001, η2 = 0.87; stride width CV: 

p < 0.001, η2 = 0.89; stride speed CV: p < 0.001, η2 = 0.80) (Figures 5–6). Magnitude of condition 

responses were not fully consistent between measured and predicted values, as demonstrated 

by significant Condition × Model interactions on stride time (p < 0.001, η2 = 0.27), stride length 

(p < 0.001, η2 = 0.27), stride width (p < 0.001, η2 = 0.25), stride speed (p < 0.001, η2 = 0.29), stride 

time CV (p < 0.001, η2 = 0.10), stride length CV (p < 0.001, η2 = 0.12), and stride width CV (p < 

0.001, η2 = 0.14). Condition × Model contrasts of stride time, length, width, and speed were 

significant for xGB regressors (p < 0.00625), indicating an underestimation of the average 

predicted speed-related change for stride outcomes. Condition × Model contrasts of stride time 

CV, stride length CV, and stride width CV were not significant for SVM regressors (p ≥ 0.00625), 

indicating no over- or underestimation in the average predicted speed-related change for 

spatiotemporal variability. 
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Figure 5. Optoelectronic-measured and smartwatch-based predictions of stride outcomes during gait at 70%, 
100%, and 130% of preferred speed. Models evaluated were linear, ridge, support vector machine (SVM), random 
forest (RF), and extreme gradient boosting (xGB) regressors. 
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Figure 6. Optoelectronic-measured and smartwatch-based predictions of spatiotemporal variability during gait at 
70%, 100%, and 130% of preferred speed. Variability was quantified by the coefficient of variation (CV). Models 
evaluated were linear, ridge, support vector machine (SVM), random forest (RF), and extreme gradient boosting 
(xGB) regressors. 

6. Discussion 

 Using regression-based machine learning, we developed smartwatch models that explain 

39–69% of spatiotemporal stride output and 35–52% of spatiotemporal variability during 
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treadmill walking in healthy young adults. Our main findings pertaining to these models are (1) 

spatiotemporal variability was predicted more accurately by dedicated regression models than 

by calculating from single-stride predictions, (2) spatiotemporal predictions had fair-to-excellent 

consistency and were not biased on average, (3) high spatiotemporal variability cases were 

typically underestimated, and (4) predicted spatiotemporal responses were sensitive to large 

within-subject effects (i.e. altered gait speed). 

 Before modelling spatiotemporal variability, we first evaluated the accuracy of single-

stride spatiotemporal outcome predictions by the smartwatch, finding relative errors of 7% for 

stride time, 9% for stride length, 10% for stride width, and 11% for stride speed. Stride time errors 

obtained in this study (7%) improve upon the 11% errors in a previous wrist IMU model that was 

based on peak-to-peak duration of anterior–posterior wrist angular velocity 25, and upon the 9–

15% errors in step, stance, and swing time from a model of smartwatch IMU features from both 

wrists, based on means reported in young adults 5,12. However, model accuracy was poorer 

compared to IMU applications on other regions of the body. The most common position reported 

in the literature is on the foot; using physics-based or machine learning-based approaches, 

previous foot IMU models measured temporal parameters with approximately 4% error 42,44,48,49 

and spatial parameters with 1–5% error 13,15,35,42,44,48,49. Similar errors of 2% in stride length and 

speed have been achieved by shank-based IMU models 27 and errors of 3–14% in spatiotemporal 

outputs were reported by trunk and pelvis-based IMU models 14,36. Collectively, these findings 

illustrate a slight improvement in accuracy of single-stride spatiotemporal predictions achieved 

by our single-smartwatch approach relative to previous wrist IMU and bilateral smartwatch IMU 

applications, but a lower accuracy relative to IMUs positioned on anatomical segments closer to 
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foot-ground contact. There is a clear trade-off between choosing an IMU position with higher 

single-stride spatiotemporal accuracy and an IMU position that is preferred by users 32 and widely 

available as a consumer product. 

Single-stride spatiotemporal prediction errors were amplified when used to calculate variability 

(errors of 63–272%) relative to the dedicated models built to predict spatiotemporal variability 

(errors of 18–22%). The SVM regression models with non-linear kernels outperformed linear and 

ridge regression, indicating that the relationship between wrist movement patterns and the 

spatial and temporal variability of foot placement is mostly non-linear. This phenomenon likely 

explains, in part, why our model predicted stride time CV more accurately (R2 = 0.35) than in a 

previous linear regression model (R2 = 0.22) 1, with models also differing in the location and the 

modality of motion inputs (smartwatch-based wrist movement patterns vs. optoelectronic-based 

lower limb joint motor patterns). Although extreme gradient boosting performed best for single-

stride outcomes, this technique likely overfit for spatiotemporal variability, despite our effort to 

control this risk with an early termination criterion during model training. With 117 total trials, 

each test set had 23 or 24 trials, compared to the 4600 or 4800 strides in each single-stride test 

set. Thus, more spatiotemporal variability data are likely needed to prevent overfitting by 

ensemble techniques.  

Smartwatch IMU-based predictions were less accurate for spatiotemporal variability than for 

single-stride outcomes in all cases. Although the larger relative errors for spatiotemporal 

variability could be due, in part, to differences in smartwatch IMU Metrics and machine learning 

model selection, we hypothesize that they reflect a combination of the smaller dataset available 

for model training and the greater challenge in quantifying stride-to-stride variability compared 
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to average stride spatiotemporal parameters based solely on wrist movement. Similar to single-

stride outcomes, spatiotemporal variability is likely to be more accurately predicted by IMUs 

closer to ground contact. Using a foot IMU, Rebula et al. 35 predicted stride length and width 

variability with relative errors within 4% and good-to-excellent consistency, better than the 

relative errors of 21–22% and fair-to-good consistency observed in our study using a smartwatch 

IMU. As with single-stride outcomes, predicting spatiotemporal variability requires one to 

consider the competing objectives of achieving high accuracy with a foot-based IMU and 

achieving high user compliance with a wrist-based IMU.  

The resolution of this trade-off depends on the application of interest. The sensitivity of 

predictions to changes in gait speed in this study demonstrate that smartwatch-predicted single-

stride and spatiotemporal variability responses during constant-speed walking are sensitive to 

within-subject phenomena with large effect sizes. As evaluations continue to leave the lab, driven 

by the need for dozens or upwards of one hundred strides for reliable assessment 24,37 and the 

debate on whether movement patterns during treadmill gait accurately represent those seen 

overground 19,20, our smartwatch-based models provide a new user-preferred method with 

potential for widespread, real-world application. For example, as a research tool, the 

smartwatch-based model could be used to investigate how single-stride and spatiotemporal 

variability gait patterns respond to different terrain, temperatures, and weather conditions. 

However, we strongly caution readers on its use as a tool to predict spatiotemporal variability for 

the purposes of fall risk assessment in its present form. On one hand, we demonstrate strong 

feasibility based on values reported in the literature for older fallers and non-fallers 26. The 1.68%, 

1.41%, and 2.99% differences in stride time CV, stride length CV, and stride speed CV are larger 
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than the 0.38%, 0.42%, 0.28% absolute errors of our models. Yet, our models are limited to 

features extracted from young adults, whose arm swing and spatiotemporal gait patterns differ 

from those of older adults 20,29. Further work is needed to refine the smartwatch-based model in 

a larger sample of adults across the lifespan, including older adults with and without a history of 

falls. 

 In conclusion, from top-scoring smartwatch IMU Metrics, we developed SVM models that 

predicted single-stride spatiotemporal outcomes with 7–11% relative error and xGB models that 

predicted spatiotemporal variability with 0.28–0.55% absolute error and 18–22% relative error 

in treadmill gait of young adults. Predictions had fair-to-excellent consistency with 

optoelectronic-measured values and were sensitive to detecting large effect sizes. 

Spatiotemporal variability prediction errors were smaller than reported differences between 

fallers and non-fallers, yet further assessment is needed in these older populations and in larger 

numbers with our models. For the first time, we demonstrate the feasibility of using a single 

smartwatch IMU to evaluate spatiotemporal variability in gait, a step towards more widespread 

real-world continuous monitoring. 
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