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Abstract

Many dynamic processes involve time delays, thus their dynamics are governed by delay differ-
ential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the
stability of time-delay systems is challenging because DDEs are infinite-dimensional. We propose
a new approach to quickly generate stability charts for DDEs using continuation of characteristic
roots (CCR). In our CCR method, the roots of the characteristic equation of a DDE are written
as implicit functions of the parameters of interest, and the continuation equations are derived in
the form of ordinary differential equations (ODEs). Numerical continuation is then employed to

determine the characteristic roots at all points in a parametric space; the stability of the original




DDE can then be easily determined. A key advantage of theoggerpmethod is that a system of
linearly independent ODEs is solved rather than the tymtrategy of solving a large eigenvalue
problem at each grid point in the domain. Thus, the CCR metardsignificantly reduce the

computational effort required to determine the stabilftyp®Es. As we demonstrate with several
examples, the CCR method generates highly accurate sgatiirts, and does so up to 10 times

faster than the Galerkin approximation method.

Keywords: computational efficiency; continuation; delay differahtequation; stability; time-

delay system.
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1 Introduction

Many models of dynamic systems involve time delays due taydein sensing and actuating op-
erations. Such systems are known as time-delayed systairhi@n dynamics are governed by
delay differential equations (DDEs). DDEs have been ingastd extensively in recent years due
to their wide-ranging applications in modeling a large nemdif natural and control processes [1].
Some examples include control systems [2], manufactuBr§]| lasers [9], the delayed feedback
control mechanism of human balancing [10-12], traffic flonwdels [13], biology [14], epilepsy
seizure models [15], physics [16], and many other engingaapplications [17]. Recently, Young
et al. [18] studied the consequences of delays and impéanfgtémentation of isolation in epi-
demic control using time-delayed dynamic system models.

A critical study for any dynamic system is analyzing its digb In stable regions of a paramet-
ric space, small perturbations decay over time and thersysmains “well-behaved”; in unstable
regions, the dynamics of the system diverge with potegt@iBastrous consequences. Determin-
ing the stability of a DDE, or the regions of stability in a paretric space, is challenging because
DDEs are infinite-dimensional [19, 20]. One strategy to deiee the stability of a DDE is to
compute the locations of its characteristic roots in the glemplane. The characteristic equation
of a DDE is a quasi-polynomial with infinitely many roots; tb®E is stable if, and only if, all
the roots lie in the left half of the complex plane. In therttteire, several methods have been
proposed to approximate the characteristic roots of DDEStadying their stability. Some ex-
amples include the semi-discretization method [21], Deseibion methods [20], finite difference
methods [22], finite element methods [23], mapping-basgordhms for large-scale computation
of quasi-polynomial roots [24], and Galerkin approximagd25, 26]. The Lambert W function is
another powerful technique to determine the stability ofE3Dhowever it can be used only when

a single delay is present [27]. In most of the aforementianethods, the characteristic roots of
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the DDE are evaluated by solving an eigenvalue problem.€fbi, to find regions of stability in
a parametric space, the region must first be discretizedaifiituite grid of sufficient density, and
then an eigenvalue problem must be solved at each grid pbinig. approach requires substantial
computational effort and is not an ideal strategy to deteenstability regions or boundaries with
high accuracy.

Methods have also been developed to determine the stabiliyDDE without calculating
its characteristic roots. For example, the direct numénntagration of a DDE provides its time
response and therefore reveals its stability. Howeverterchine the regions of stability in a para-
metric space using this method, it would be necessary tyam#the time response of the DDE at
all points in the spectrum. Analytical stability boundar@gan be obtained by tracking all the criti-
cal curves on which at least one pair of purely imaginarys@xists. However, this method does
not provide any information about the stable and unstalgiens in the spectrum. Also, it cannot
be guaranteed that the critical curves always represestabdity boundary: it may happen that a
pair of characteristic roots lies on the imaginary axis wlihother pair lies in the right half of the
complex plane, in which case the system is unstable. Cltrst@iment of characteristic roots [28]
can be used to generate exact stability charts for DDEs; yenvthis strategy does not provide
any information about the characteristic roots or theiatmns. The multidimensional bisection
method is another interesting strategy [29, 30], but agaiwvides only the stability boundaries.
More recently, Che et al. [31] proposed a multi-fidelity mioide identifying the stability bound-
ary in time-delayed systems. In this approach, the stglibundaries are identified accurately by
refining the mesh at the critical regions. While the compatet effort required for the approach
of Che et al. is small relative to many other methods, a latgeber of eigenvalue problems must
still be solved to determine the stability boundaries.

The methods discussed above suggest that determiningathiétgtof a DDE, or the regions

of stability in a parametric space, is a computationallyemgive task. In this work, we have de-
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veloped a continuation of characteristic roots (CCR) mettvodetermine the characteristic roots
and thus the stability regions of retarded DDEs with retdsivow computational cost. We assume
that the characteristic roots depend continuously on thanpaters of interest. (This is true in
many but not all systems, one exception being certain asai with multiple delays modeled by
neutral DDEs [32].) In the CCR method, we first write the cletegstic roots as implicit functions
of the parameters of interest and derive the continuatioatons in the form of ordinary differ-
ential equations (ODES), using the chain rule of differaindn. Upon solving these ODESs using
appropriate initial conditions, we obtain the correspogdioots with respect to the parameters of
interest. Thus, very accurate stability charts are obthsply by solving systems of linearly
independent ODEs rather than solving a large number of e@de® problems. The proposed CCR
method is closely related to the strategy that was recemgldped independently by Wang et
al. [33] to identify bifurcation points along stability bodaries for vibration control problems.
(The present manuscript was uploaded to arXiv.org for aetfid4] prior to the appearance of the
work by Wang et al.)

This paper is organized as follows. In Sec. 2, we describ€@RR method for determining the
roots of the characteristic equation of a DDE and the styaiegletermine its regions of stability.
In Sec. 3, we provide several examples to demonstrate tlva@ffof the proposed CCR method.
We also discuss a scenario in which the method fails and remord a technique to address this

limitation. Finally, we summarize our findings in Sec. 4.

2 Mathematical Modeling

In this section, we describe the mathematical proceduragptying the CCR method by consid-

ering a second-order retarded DDE of the following form:
IL‘(t) + CL1i’(t) + CLQIL‘(t) + bll‘(t — 7'1) + bgl'(t — 7'2) = 0, (l)
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wherex(t) is the system state vectart) andi(t) are its first and second derivatives with respect
to time,{ay, as, b1, b2} € R are parameters, and time delays> 0 for i = 1, 2. Equation (1) is a
DDE if any 7; > 0; otherwise, it is simply an ODE. History functions that dése the past states

of the system are given as follows:

z(t) = a(t), (2)

i(t) =), —7<t<O0, (3)

wherer = max7;, 7). The characteristic equation of the DDE is obtained by stltisty z = *
into Eq. (1):

D()\) 3 )\2 + Cll)\ + as + bl)\6_>\7—1 + b26_>\7—2 = 0. (4)

To determine the characteristic rootg corresponding to the first time delay ) in Eq. (4), we

write A\ as an implicit function oty and, from the chain rule of differentiation, we have thedai

ing:
0D oD
dD()\, 7'1) = ad)\ + 8—7'1d7—1 = O, (5)
dA oD /oD by \2e= A
dm, or/ O 2XA + a; + by (1 — A7) e — byrge™ 2

Similarly, to determine\ corresponding ta,, we write A as an implicit function of, and proceed

as above:

oD oD

dD(\, 1) = md)\ + 8—7_2d7‘2 =0, (7)
dr _ 0D JoD b (8)
dry,  Om/ O\ 2N+ ap + by (1 — A1p) e A1 — byrpe 72

Upon solving the ODESs given by Egs. (6) and (8), we obtain dloésrof the characteristic equation
(Eqg. (4)) corresponding to delays andr,, respectively. The initial conditions (roots) to solve the

ODEs (Egs. (6) and (8)) can be obtained using any of varioistieg methods [21, 26]; in this
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work, we use Galerkin approximation [25, 26] to determireitiitial roots. To compute multiple

roots simultaneously, Egs. (6) and (8) are written as a sysfdinearly independent ODEs:

dx _ 0D,

— =  =1,2
d’TZ‘ 07'2‘7 ? )= (9)

wherex = [\, Ao, .. ., AN]T is a vector of characteristic root#,is a Jacobian matrix given by =
diag (g—ﬁ, 82, (%—’:I’V), andD; is a diagonal matrix given bp; = diag ( D(A\y, 73), D(M\a, 7i), . . .,
D(A\n,7;) ). The system of ODEs in Eqg. (9) is solved, using the roots abthfrom the Galerkin
approximation method as initial conditions, to determine ¢orresponding roots with respect to
parameter;.

Suppose we wish to determine the stability regions of the IEXE (1)) in the parametric space
of i € [, 71] andny € [y, 7»]. We first use the Galerkin approach to evaluate/tfheghtmost
characteristic roots for Eq. (4) at any point, ;) in the parametric space, whete< 7 < 7; and
7, < 15 < 7». The obtained roots are then used as initial conditions lieesbe system of ODEs
(Eq. (9)) over the domains € |71, 7y] andr, € [7f, 71], holdingm, = 7 constant. The solution is
then evaluated at specified grid points where |7, 71] andm, = 7. Note that, in the domain of
integrationr; € [, 7|, we begin at, = 77 and solve for decreasing. Upon completion of this
stage, we have obtained through numerical continuatiocdh®spondingV characteristic roots
at each pointin the domain € [, 71| andm, = 7. Next, we use each of these solutions as initial
conditions to solve the system of ODEs (Eq. (9)) alongrthdimension—that is, over the domains
T € [T, T3] @andry, € |75, T»]—while holdingr, constant in each integration. We repeat for each
solution alongr; € [7, 7] computed earlier. Upon completion of this stage, we havainét
the corresponding characteristic roots at all points inpghametric spacg, 71] X [72, 72]. The
stability charts for the original DDE system (Eq. (1)) caarilbe generated simply by determining
the location in the complex plane of the rightmost charatierroot at each grid point in the

parametric space. The CCR method has been summarized intAlgd..
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Algorithm 1: The CCR method for fast generation of stability charts forE3D
Given: A second-order DDE of the form given in Eq. (1) and a pararaspacer, 71| X T2, T2).

Find: The stability chart for the DDE over the specified paramedpiace.

1: Aic < N rightmost characteristic roots at any pofnt, 7;) in the parametric space, obtained
using the Galerkin approach.
20 A solve% - —J‘l%—?ll over the domains; € |7, 7] andm, € [r}, 7], usingAc as
initial conditions and holding, = 7; constant, and evaluate the solutiom\at grid points.
3: for i from 1 to N,, do
4. X, « solvef2 — —J 1922 over the domains, € [7, 73] andm, € [75, 7], usingA.,
as initial conditions and holding, = 7, constant, and evaluate the solution\at, grid

points.
5: end for

6: # Check for stability

7: for ¢ from 1 to N,, do

8: for j from1to N, do

9: if max(Re{A%/}) < 0then
10: Stable at the poinr{, 73).
11: else
12: Unstable at the poinfri, 73).
13: end if

14: end for

15: end for

Samukham, Uchida, Vyasarayani 8 CND-20-1250



3 Results

In this section, we generate the stability charts for thr&EB using the proposed CCR method
and compare them with the stability charts obtained usieg3hlerkin approach. We discuss the
root-crossing phenomenon and demonstrate why severalatkastic roots must be continued to
obtain accurate stability charts; simply continuing thghtmost root is inadequate. Finally, we

present a scenario in which continuation fails and provideategy to address this limitation.

3.1 Example 1l

We first consider the following first-order DDE with five detay
5
T+ ar + Z bix(t —7;) =0. (10)
=1
Upon substitutinge = ¢ into Eg. (10), we obtain the following characteristic edotfor the
DDE:

5
D) =A+a+ Y e =0 (11)

i=1

By considering\ as an implicit function ofr, and following a similar mathematical approach as

described in Sec. 2, we arrive at the following ODE:

d\ 9D /dD biAe >

d7'1 07'1 8)\ 1 — Z?:l biTZC_)‘Ti ( )

Upon solving the above ODE (Eq. (12)), using the rightmosrabteristic roots obtained from the

Galerkin approach as initial conditions, we obtain the samirresponding te,.

Root-crossing

In this section, we explore the accuracy of the CCR methoetrohining the rightmost charac-

teristic root for the DDE. We first determine the 8 rightmasits for the characteristic equation
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Figure 1: Crossing of the characteristic roots of the DDE given by E) (

(EQ. (11)) using the Galerkin approach. We then use theds esoinitial conditions to solve the
ODE (Eq. (12)) and determing in the domainm; € [0.001, 1]. The parameters used for this
analysis are as followse = 1, by = 3, by = 2.8, b3 = 0.6, by = 0.8, b5 = 1, ¥ = 0.001,

™ = 0.25, 3 = 1, 7w = 1.5, andts = 2. The real part of each characteristic root obtained from
the continuation method is shown in Fig. 1. Because the cltexiatic roots appear as complex
conjugates, only the odd-numbered roots are shown. Thergom{rightmost) characteristic root
corresponding te; obtained using the Galerkin approach.4,) has also been shown in Fig. 1. In
the Galerkin approachymax Was obtained by discretizing the domaine [0.001, 1] into 200 grid
points and solving an eigenvalue problem at each point.

This example demonstrates that the dominant characterait at the initial point may not
be the dominant root throughout the domain. In Fig. 1, the idant root at the initial point
7, = 0.001 (i.e., \;) is dominant only in the domain, € [0.001,0.08]. At 7, = 0.08, the third
root (\3) crosses\; and is dominant in the interval = [0.08, 0.33]; the fifth root (\5) is dominant
in the intervalr, € [0.33,0.82] and, finally, the first rootX;) is again dominant in the interval

7, € [0.82,1]. Figure 1 clearly illustrates the root-crossing phenonmeindhe characteristic roots
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of the DDE and proves that the rightmost root at one point n@yemain dominant throughout
the domain. The location of the rightmost root determinestivlr the system is stable and, thus,
is critical information for generating the stability chafor a DDE. Therefore, we observe that it
is not sufficient to continue only the rightmost root; we @& track theV rightmost roots and

increaseN until convergence is achieved.

Stability chart

We now use the CCR method to determine the regions of staflitthe DDE (Eq. (10)) in the
parametric space € [0.001, 1] and7, € [0.001,1]. To generate the stability chart, we first use
Galerkin approximation to obtain the 25 rightmost chanastie roots for the DDE at the initial
point (7, 75) = (0.001,0.001). The other parameters are as follows= 1, by = 3, by = 2.8,

bs =0.6,b, =0.8,b5 =1, 3 =1, 74 = 1.5, andt; = 2. To determine the roots at the initial point
with high accuracy, we us¥; = 200 modes in the Galerkin approximation. We use these roots as
initial conditions to solve the ODE (Eq. (12)) and deternmtimecharacteristic roots that correspond
to ; in the intervalr, € [0.001,1]. The integration is performed in MLAB using the “ode45”
explicit integrator with absolute and relative tolerano&$0~'2. The solution of the ODEs is then
evaluated at 2000 equidistant points in the interyat [0.001, 1] to obtain the corresponding 25
roots for Eg. (11). Next, we use the obtained roots from E2) &k initial conditions and continue

the roots with respect tg, using the following equation:

d D D by e 72
A _ 0D JoD ¢ . (13)
d7_2 a7_2 8)\ 1-— Zi:l biTZC_)‘Ti

Equation (13) is solved and evaluated at 2000 equidistéshpgints in the intervak, € [0.001, 1]
for each point along; € [0.001, 1]. Following this integration step, the corresponding cbara
teristic roots of the DDE (Eq. (10)) at all grid points in tharametric space, € [0.001, 1] and

T, € [0.001, 1] have been determined. Finally, we obtain the stabilityorgiof the DDE by ana-
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Figure 2. Stability chart for the first-order DDE with five delays (EG0]) obtained using (A) the

CCR method and (B) the Galerkin approach.

lyzing the location of the characteristic roots in the coaxgblane at each point in the parametric
space.

The stability chart obtained using the CCR method is shovign2(A). The color contours in
the figure represent the maximum damping present in thersysi, the real part of the dominant
characteristic root). To verify the results obtained frived CCR method, we also present the results
obtained using Galerkin approximation only, shown in Fi@)2 In the Galerkin-only approach,
we discretize the parametric space in28a0 x 2000 grid and solve an eigenvalue problem at each
grid point usingNs = 25 to determine the dominant characteristic root. The reguéisented in

Fig. 2 clearly demonstrate the correctness of the resuttsraal using the CCR method.

3.2 Example 2

In this example, we consider the following second-order Dvibth a single delay:

Z(t) + ax(t) — bx(t —7) =0, (14)
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which has the following characteristic equation:
D) =X +a—be™ =0. (15)

We determine the stability regions of the DDE (Eq. (14)) ia prarametric spacec [0.01, 10] and
b € [-1.5,1.5]. We write X as an implicit function of: andb separately, and write the continuation

differential equations using the chain rule of differetitia as follows:

d)\ oD /0D 1

Fri v s Wi wray s (16)
—AT

d\ 9D /oD ¢ a7

b /) N Atbre
As in the previous example, we begin by determining the 2Btnpst characteristic roots for
Eqg. (15) using the Galerkin approach, in this case usingrthiali point (a,b) = (0.01, —1.5);
the time delay parameter in Eq. (14) is setrte= 27. We then use the roots obtained from the
Galerkin approach as initial conditions to solve the ODEdn@6) over the domaia € [0.01, 10]
with b = —1.5 held constant. The roots obtained from Eq. (16) are then asduitial conditions
to solve Eq. (17) along € [—1.5,1.5] for each point in the domain € [0.01, 10]. The stability
regions thus obtained from the CCR method are shown in FA); 8te results obtained using the
Galerkin approach are shown in Fig. 3(B) for verification. dgsize of2000 x 2000 was used
for both methods. The results presented in Fig. 3 again dstrada the correctness of the results

obtained using the CCR method.

3.3 Example 3
We now consider the following second-order DDE with two gsla

() + a12(t) + agw(t) + byt — 71) + box(t — 11) + b3@(t — 72) + bazx(t — ) =0,  (18)
which has the following characteristic equation:

D()\) = )\2 -+ 0,1)\ + ag + bl)\e_)‘ﬁ —+ 626_)\71 + bg)\e_)\T2 -+ b46_)\72 = 0. (19)
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Figure 3: Stability chart for the second-order DDE with a single d€lag. (14)) obtained using

(A) the CCR method and (B) the Galerkin approach.

To determine the stability regions of the DDE (Eq. (18)) ie f{arametric space of and,
we write A as an implicit function ofr, andr, separately, and derive the continuation differential

equations using the chain rule of differentiation:

dA . oD /oD (b1>\2 + b2)\) e~

AR e i 2
dTl 87’1 8>\ A ’ ( O)
d\ 9D /oD (b3A2 + by)) e

Bt = 21
d’TQ 07'2 O\ A ’ ( )

where
A =2\ + a1 + bl (1 - )\’7‘1) 6_)\7—1 — b2’7'16_)\7—1 + bg (1 — )\’7‘2) 6_)\7—2 — b4’7‘26_)\7—2. (22)

For the DDE given by Eq. (18), we analyze the stability of tixstem in the parametric space of

71 andr, for two sets of parameters:
e Setl.a; =0.8,a,=19,b; =0,by = 0.8, b3 =0, andb4 =0.5

e Set2:a;1 =3,ay =5,b; =0.5, by = 3, bg = 0.6, andb4 =52
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Figure 4. Stability chart for the second-order DDE with two delays.(B@)) using parameter set

1, obtained using (A) the CCR method and (B) the Galerkin @ggin.

The stability analysis for the DDE is performed using the Q@&hod by solving the ODEs given
by Egs. (20) and (21). The initial conditions for the ODEgwt initial point(r;, 72) = (0.01,0.01)
are obtained using the Galerkin approach. The stabilitytstggnerated using the CCR method for
parameter sets 1 and 2 are shown in Figs. 4(A) and 5(A), régplc the corresponding stability
charts obtained using Galerkin approach are shown in Fi@. anhd 5(B) for comparison. All
stability charts in Figs. 4 and 5 are generated over a grigl 6i2000 x 2000. Once again, the
stability regions found using the CCR method match thosedaising the Galerkin approximation

method.

3.4 Rank-deficient Jacobian

While the above examples demonstrate the efficacy of theogempCCR method for determining
the characteristic roots and stability regions of a DDE,rtte¢hod has a limitation. It is possible
that the derived continuation ODEs will become singulardertain parameters, in which case

the solution of the ODE cannot be determined. One such caskdem encountered for the DDE
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Figure 5: Stability chart for the second-order DDE with two delays .(B@)) using parameter set

2, obtained using (A) the CCR method and (B) the Galerkin aggdn.

given by Eq. (18) using the following parameters (set@)= 1.5, as = 0.8, by = 2, by = 0.5,
bs = 1, andby, = 1. When these parameters are usggl,: 0 for certain combinations of;, 7o,
and), leading to|J| = 0 and, thus, the differential equations given by Egs. (20)(@4l become
singular. When a MTLAB integrator is used to solve such ODEs, it fails to proceednlié= 0.
To overcome this limitation, we terminate the integratidmewevetJ| = 0 and resume integration
at the next grid point with a new set of initial conditions kxded using the Galerkin approach at
the corresponding point.

The stability chart generated for parameter set 3 using @R @ethod is shown in Fig. 6(A).
All points at which the Jacobian becomes rank-deficient, (Maere|JJ| = 0) while determining
the stability regions are shown in Fig. 6(B). At each of thé3eoints, the ODEs become singular
and a new integration process is initiated at the followimnigl gpoint with a fresh set of initial
conditions, determined using the Galerkin approach. Tiusguure adequately addresses the issue
of encountering non-invertible Jacobians during contiimmg and enables accurate determination

of the stability regions despite these singularities.
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Figure 6: Stability analysis for the second-order DDE with two deléyq. (18)) using parameter
set 3: (A) stability chart obtained using the CCR method @&8)da(l points at which the Jacobian

becomes rank-deficient.

3.5 Computation time

Finally, we report the computation time required to gereetia¢ stability charts shown in Figs. 2-5
using the CCR method and the Galerkin approach. All simiativere performed using MLAB
R2018b on a 2.6-GHz Intel Xeon E5-2670 processor with 48 Gheyhory. As shown in Table 1,
the stability charts presented here were generated bet@:8eand 10.3 times faster using the
CCR method. Furthermore, in the Galerkin approach, one sulgé an eigenvalue problem of
size Ng x Ng for a first-order system an2lN; x 2N for a second-order system at each grid
point in the parametric space. Note that the grid size hagrafisiant effect on the simulation
time in the Galerkin approach: simulation time increasesdrly with the number of grid points.
Indeed, for any strategy in which an eigenvalue problemligesiat each grid point, the anticipated
computation time is approximatetynC for a grid of sizen xm, whereC' is the computational cost
of solving each eigenvalue problem. In contrast, the CCRhaotkis a continuation technique and

the characteristic roots are obtained by solving a systelnedrly independent ODESs, requiring
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Table 1: Computation time required to generate stability chartODES.

Computation time (s)
System
Galerkin approach  CCR method
Figure 2 (Eqg. (10)) 688 95 (7.2« faster)
Figure 3 (EqQ. (14)) 1083 105 (10.3« faster)
Figure 4 (EqQ. (18), parameter set (1) 653 108 (6.0« faster)
Figure 5 (EqQ. (18), parameter set 2) 662 168 (3.9« faster)

substantially less computational effort. As illustrataddlgorithm 1, the complexity of the CCR
method iSN N,; O(N,2), whereN is the number of roots being continuetl,, is the number of

grid points over the domain of parameter 1, andV,.) is the computational cost of solving a
system of ODEs (Eqg. (9)) over the domain of parameter 2. Thlksize does not dramatically
affect the computation time in the CCR method and, as a resability regions can be readily

determined with very high accuracy.

4 Conclusions

We have developed a continuation of characteristic roo®R0Omethod to determine the roots of
the characteristic equation and obtain highly accurat@lgtecharts for retarded delay differential
equations (DDEs) with multiple delays. In this method, wéewhe characteristic roots as implicit
functions of the parameter of interest and derive a contion@quation in the form of an ordinary
differential equation (ODE). The roots of the charactéristjuation are determined by numerically
integrating this derived system of linearly independentE3Dusing the solution obtained from

the Galerkin approximation method as initial conditionsheTstability regions of the DDE are
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then determined by identifying the location of the rightmolsaracteristic root over the entire
parametric space. A key advantage of the proposed CCR mgthioal, rather than evaluating a
large number of eigenvalue problems, highly accurate lgabharts of the DDE are determined
by solving a system of linearly independent ODEs. Furtheenithe CCR method can reduce the
required computational time by a significant amount whenmaned to other available methods.
The efficacy of the proposed method has been demonstratagl first- and second-order DDEs
with multiple delays. The stability charts obtained in thisrk using the CCR method match those
obtained using the Galerkin approach, and were generategé&e 3.9 and 10.3 times faster using
the CCR method. Finally, we have identified a limitation of tDCR method and recommended
a technique to overcome rank-deficient Jacobians. Altheughimited our analysis to first- and
second-order DDEs in this work, the CCR method can also bkealjo generate stability charts

for higher-order DDEs.
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