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Abstract In this paper, we propose a pole-placement
technique for second-order, time-delayed systems that
combines the strengths of the method of receptances
and an optimization-based strategy. The method of re-
ceptances involves solving an algebraic system of equa-
tions to obtain the closed-loop gains that place the
poles of the system at desired locations. The method
of receptances is simple and efficient, but the placed
poles may not be the rightmost poles so the resulting
closed-loop system may not be stable. By contrast, an
optimization-based approach can explicitly consider the
rightmost pole in the objective function and thus can
guarantee its location. In this work, we use Galerkin ap-
proximations to obtain the characteristic roots of time-
delayed systems. When the method of receptances pro-
vides an unsatisfactory solution, we use particle swarm
optimization to improve the location of the rightmost
pole. The proposed approach is demonstrated with nu-
merical studies and is validated experimentally using a
3D hovercraft apparatus.
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1 Introduction

Consider the following second-order system with feed-
back control:

Mx(t) + Cx(t) + Kx(t) = bu(t — 1) (1a)
u(t —7) =%t —7) + gTx(t — 7)
(1b)

where x is the state vector; M, C, and K are the mass,
damping, and stiffness matrices; u is the control effort,
which is mapped onto the states by b; f and g contain
the control gains; and 7 is a time delay. The system
is governed by ordinary differential equations (ODESs)
when 7 = 0 and delay differential equations (DDEs)
when 7 > 0. In the latter case, the system is referred
to as a time-delayed system (TDS). Time delays are
inevitable in many practical systems, often appearing
as a result of sensing, communication, and actuation
processes.

Pole placement is a classical problem in the control
theory domain. The objective is to design a controller
that places the closed-loop poles at specific locations,
thereby resulting in the desired system behaviour. In
this work, we consider the pole-placement problem for
systems governed by second-order DDEs. Many pole-
placement techniques have been established for systems
governed by ODEs, but pole placement for TDS re-
mains an active area of investigation. Time delays in
Eq. (1) turn a finite-dimensional system of ODEs into
an infinite-dimensional system due to the transcenden-
tal nature of the characteristic equation. This infinite
dimensionality makes the pole-placement problem chal-
lenging for TDS [10,41,42]. Because tuning an infinite
number of parameters is impossible, our objective is to
tune finitely many parameters to control an infinite-
dimensional system.
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The method of receptances (MoR) developed by
Ram et al. [22,23] is a popular algebraic strategy for
addressing the pole-placement problem in TDS. Ram
et al. [23] used MoR to place 2n poles (eigenvalues
of the characteristic polynomial) of a second-order
system with n degrees of freedom—that is, for a
system with 2n states when written in first-order form.
Later, Ram et al. [22] proposed a hybrid method for
partial pole placement of second-order systems. As its
name suggests, this work placed only m < 2n poles at
specified locations, leaving the remaining spectrum of
2n — m poles undisturbed. Although computationally
straightforward, the MoR approach has several draw-
backs: the poles placed at the specified locations may
not be dominant (referred to as “spillover”), a separate
analysis must be performed to determine whether the
resulting closed-loop system is stable, and multiple
delays cannot be accommodated. In Ram et al. [23],
the time delay was handled using the Taylor series
expansion; however, Insperger [9] demonstrated that
the results obtained using Taylor series expansion for
time delays are often inaccurate.

Several authors have advanced the field in recent
years; here, we provide a brief chronology of these de-
velopments. Pratt et al. [20] defined the pole-placement
problem for a TDS as a quadratic partial eigenvalue as-
signment problem with time delay, and proposed a “di-
rect and partial modal” approach for active vibration
problems. As with the method of Ram et al. [23], the
approach proposed by Pratt et al. [20] was limited by
its use of the Taylor series for incorporating the time
delay and by the requirement to perform an a posteri-
ori analysis to ascertain the stability of the resulting
system. Ouyang and Singh [19] used MoR in one of the
first applications of pole placement to asymmetric sys-
tems with time delay. Once again, this approach has
the drawback that stability is not guaranteed.

Singh and Datta [30] obtained a closed-form
solution to compute control gains for zero assignment
in active vibration control problems. As with the work
of Ram et al. [23], an a posteriori analysis is required
to compute the primary eigenvalues of the system,
which increases the complexity of computation. Bai
et al. [5] formulated the pole-placement problem for
second-order systems as a partial quadratic eigenvalue
assignment problem (PQEAP) and proposed a multi-
step hybrid method for solving symmetric systems.
The proposed approach was applied to a multiple-input
system, wherein the system matrices were combined
with the measured receptances. A limitation of this
approach is that it can be applied only to symmetric
systems. Furthermore, the effects of high time delays
(i.e., 7 > 0.1) were not explored. Bai et al. [4] later

proposed an optimization-based approach to solve the
PQEAP, extending the single-input hybrid method
proposed by Ram et al. [22]. The optimization-based
hybrid method of Bai et al. minimizes the feedback
norms of the multi-input PQEAP with time delay.

Wang and Zhang [38] proposed a direct method
to solve the partial eigenvalue assignment problem for
high-order control systems with time delay, without
first converting the system into first-order form. The
proposed method requires only partial knowledge of the
eigenvalues and corresponding eigenvectors of the ma-
trix polynomial; however, the Taylor series was used to
address the transcendental terms, which will fail to pro-
vide accurate results at higher delays. Mao and Dai [15]
analyzed the sensitivity of closed-loop eigenvalues to
perturbations in time delay during partial eigenvalue
assignment. Li and Chu [13] generalized the well-known
Kautsky, Nichols, and Van Dooren algorithm to solve
the pole-placement problem for linear and quadratic
TDS. They demonstrated that the results for systems
with time delay are similar to those without delay, ex-
cept for the presence of secondary eigenvalues.

Singh and Ouyang [32] proposed a method for
assigning complex poles to second-order damped
asymmetric systems using a constant-time-delay state-
feedback controller. Again, an a posteriori analysis
was necessary because the eigenvalues that are placed
at the desired locations are not guaranteed to be
the primary eigenvalues. Mao [14] proposed a partial
eigenvalue assignment problem for TDS based on
the orthogonality relations of the quadratic pencil
(characteristic equation). Mao demonstrated the
partial assignment of eigenvalues in a TDS without
disturbing the remaining spectrum, obtained the
explicit solution for the single-input case, and reported
the parametric solution for the multi-input case. Singh
et al. [31] defined a pole-placement problem without
first transforming a given second-order system into a
standard state-space form. Employing a sophisticated
mathematical theory, Singh et al. were able to guar-
antee that the unassigned eigenvalues do not reside to
the right of the assigned poles in the complex plane
(i.e., there is no spillover).

Schmid and Nguyen [29] proposed a parametric for-
mula for the feedback-gain matrix that will produce
a desired set of closed-loop eigenvalues for a TDS. By
considering only small time delays in the input, Schmid
and Nguyen used unconstrained optimization to obtain
the state-feedback matrix, minimizing the sensitivity
of the eigenvalues to input delays. Schmid et al. [2§]
extended this approach to TDS with multiple time de-
lays by first designing the control law for a non-delayed
system, then investigating its applicability to the cor-
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responding TDS. Schmid et al. demonstrated that it
is possible to place the poles of a TDS at the same
locations as for the system without delay. An a pos-
teriori analysis using the quasi-polynomial root-finder
(QPmR) algorithm [37] was performed to study the sta-
bility of the resulting system.

Zhang [43] proposed an explicit algorithm to assign
the eigenvalues for multi-input, high-order control sys-
tems with time delay. Zhang demonstrated that this
method avoids spillover and can be implemented with
only partial information of the eigenvalues and corre-
sponding eigenvectors of the matrix polynomial. Wang
and Zhang extended their earlier work on partial assign-
ment [38] and applied it to a multi-input TDS with-
out use of the Sherman-Morrison formula [39]. Ariy-
atanapol et al. [3] proposed a receptance-based method
for partial pole placement in asymmetric TDS that re-
quires no knowledge of the mass, damping, or stiffness
matrices. Ariyatanapol et al. used a single-input state-
feedback controller and determined the critical stability
of the system using the frequency-sweeping test. An a
posteriori analysis was performed to calculate the first
few dominant poles of the resulting closed-loop system
and, thus, to analyze the stability of the system. Zhang
and Shan [44] extended the work of Ram et al. [22] to
solve the partial pole-zero placement problem in high-
order systems using MoR.

Santos et al. [27] generalized the single-input, single-
output, first-order small-gain theorem using the sys-
tem receptances. Specifically, the small-gain theorem
was extended to second-order systems with multiple
inputs and time-varying delays with output feedback.
Santos et al. also proposed a detuning strategy to ad-
dress the tradeoff between performance and robustness
with respect to variation in delay. Because the closed-
loop poles are not computed in this method, their pro-
posed approach can be used only to analyze delay un-
certainty. Aratdjo [2] demonstrated use of system mar-
gins and Nyquist plots to determine the closed-loop sta-
bility of TDS. It was also shown that the Padé approx-
imation for time delay in the frequency domain is as
accurate as the corresponding truncated Taylor expo-
nential expansion.

Experimental validation of stabilization techniques
for TDS have not been widely explored in the literature.
Previous studies have reported experimental validation
for only a small number of control strategies, including
semi-discretization [21], high-order control design [21],
and cluster treatment of characteristic roots [18]. How-
ever, none of these studies have explored experimental
validation of the pole-placement problem using real-
time experiments.

In this work, we present a pole-placement technique
for time-delayed systems that combines the strengths of
the method of receptances and an optimization-based
strategy. The method of receptances is simple and ef-
ficient, but may fail for certain systems and time de-
lays. On the other hand, the optimization-based strat-
egy guarantees the location of the rightmost pole but
is more computationally demanding. Other established
methods to design controllers for time-delayed systems
include the Smith predictor, the modified Smith pre-
dictor, and finite spectrum assignment [17]; however,
the performance of these methods depends on the accu-
racy of an internal model. For example, these techniques
will stabilize an otherwise unstable time-delayed system
only if the internal model is predicted accurately and
if the effects of initial conditions and disturbances are
known. These techniques are also sensitive to inaccura-
cies in the implementation of the control law, and re-
quire computing integrals of past control inputs which,
when approximated using numerical quadrature, can af-
fect system stability. By contrast, an internal model is
not required in our proposed hybrid method, so it does
not suffer from these limitations. Finally, we note that
the Smith predictor, the modified Smith predictor, and
finite spectrum assignment are sensitive to small per-
turbations in time delay around an assumed operating
point; as we will show, our proposed approach exhibits
robustness to perturbations in time delay.

We propose an optimization-based strategy to ad-
dress the limitations of the method of receptances. The
pole-placement method of Michiels et al. [16] also em-
ploys optimization; however, our approach differs in two
substantial respects. First, Michiels et al. obtain the
characteristic roots using subspace iteration [7] whereas
we use Galerkin approximations. Second, Michiels et al.
use a gradient descent algorithm for pole placement,
which may fail to find the globally optimal solution; we
propose particle swarm optimization to avoid converg-
ing to a local optimum.

The remainder of the paper is organized as follows.
In Section 2, we briefly describe the method of recep-
tances for completeness. In Section 3, we provide a
detailed mathematical derivation of the Galerkin ap-
proximations we use to find the characteristic roots of
quadratic TDS with a single delay. The optimization
problem we solve is defined in Section 4. In Section 5,
we apply the proposed method to stabilize examples
given by Ram et al. [23]. Finally, we present experi-
mental validation using a 3D hovercraft apparatus in
Section 6.
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2 Method of Receptances

We briefly describe the method of receptances (MoR)
here for completeness. Consider the following system,
which is obtained upon substituting x(¢) = xge" into
Eq. (1):

(FM 1G4 K) o™ = (b7 4 bgT) x0T (2)
Eq. (2) can be rewritten as follows:
PM+7r(C—bfTe ™)+ (K—bgTe ") x0=0
[ ( g

(3)

The receptance matrices associated with the open-loop
system (H,(r)) and closed-loop system (H.(r)) are the
following:

H,(r) = [r"M +rC + K] ! (4a)
H.(r)= [r"M+r(C - bfTe™"T)
+ (K= bgTem)] (4b)

Matrix H.(r) can be computed using the Sherman—
Morrison formula [8]:

H,(r)b (g + rf)" H,(r)e ™"
1—(g+rf)THy(r)be""

H.(r) = H,(r) + ()
Note that the values of r that render H.(r) unbounded
are the eigenvalues of the closed-loop system. Thus, the
characteristic equation of Eq. (5) is the following:

(g+rf) Hy(r)b=¢" (6)

where the control vectors f and g can be computed
given the system matrices (M, C, and K), the vector
that maps the control effort onto the states (b), the

delay (7), and eigenvalues ri, k= 1,2,...,2n:
rlrrlf r? enT
rgrg rg £ e’
) ) = : 7
: : {g } : @)

T2nrgn rgn er2nT

where rp £ H,(r,)b. Thus, the control vectors f and
g can be obtained simply by solving a linear system of
2n equations (Eq. (7)) for 2n unknowns.

As stated in Section 1, the MoR approach is
computationally straightforward but can suffer from
spillover—that is, the poles placed at the specified
locations may not be the dominant poles. A separate
analysis must be performed to compute the charac-
teristic roots and, thus, to determine whether the
resulting closed-loop system is stable. We compute
the roots of the TDS explicitly using Galerkin ap-
proximations with the spectral-tau method (described

below). In situations where spillover is detected in the
solution provided by the MoR approach, we propose
a new optimization-based pole-placement strategy.
The proposed optimization strategy makes use of
the information about the characteristic roots that is
provided by the Galerkin approximations.

A time-delayed system has a transcendental charac-
teristic equation. Several methods have been proposed
in the literature to compute the characteristic roots of a
TDS, including the Lambert W function [42], Galerkin
approximations [24, 35], semi-discretization [11], pseu-
dospectral collocation [6], continuous-time approxima-
tion [33], and homotopy continuation [34]. In this work,
Galerkin approximations are used to compute the char-
acteristic roots. First, the equation governing the dy-
namics of the TDS (which is a DDE) is converted into a
partial-differential equation (PDE) with boundary con-
ditions. The PDE is then approximated by a system
of ODEs, the eigenvalues of which are the approxi-
mate roots of the characteristic equation of the TDS.
The efficacy of Galerkin approximations in studying
the stability of DDEs has been demonstrated previ-
ously [24-26, 36]. These studies have also shown that
the eigenvalues of the approximate ODE system con-
verge to the eigenvalues of the original DDE system
starting from the rightmost root.

The boundary conditions in previous work using
Galerkin approximations have been handled using the
spectral-tau and Lagrange multiplier methods [24-26,
36]. In this work, we use the spectral-tau method for
embedding the boundary conditions because, with this
method, the formulation can be generalized such that
only the boundary conditions differ for different prob-
lems. Several options also exist for selecting the basis
functions. In this work, we use shifted Legendre poly-
nomials as the basis functions because of their superior
convergence properties compared to other basis func-
tions, such as mixed Fourier and Chebyshev polynomi-
als [36].

3 Mathematical Modelling

In this section, we present the mathematical model for
finding the characteristic roots of a DDE using Galerkin
approximations. We consider systems of DDEs of the
form given in Eq. (1) (higher-order systems have also
been considered in the literature [12]). We begin by
expressing Eq. (1) in first-order form:

X(t) + Ax(t) + bu(t —7) =0 (8a)

u(t —7) =kTx(t — 1) (8b)
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where %(t) £ [xT (t),xT(t)]T € RP*1 is the state vec-
tor, u is the control effort, and 7 > 0 is the time delay.
Matrix A € RP*P and vectors b € RP*! and k € RP*1
are given as follows:

_, [MTlC MK
A
S

B

where I is the identity matrix. The characteristic equa-
tion of Eq. (8) can be obtained by substituting X(t) =
%oe®t and equating the determinant to zero:

det (sSI+ A +bkTe ") =0 (10)

Equation (10) is a quasi-polynomial due to the tran-
scendental terms e~ *" and therefore has infinitely many
roots. These roots can be computed by formulating
an abstract Cauchy problem, ultimately resulting in a
large linear eigenvalue problem.

We first convert the system of DDEs (Eq. (8)) into
a system of PDEs with time-dependent boundary con-
ditions. We perform the following transformation:

y(s,t) =x(t+ s) (11)

where y is a function of s € [—7,0] and t. We obtain
an abstract Cauchy problem by differentiating Eq. (11)
with respect to s and t:

Jy(s,t)  O0X(t+s)0(t+s) OX(t+s)

ot olt+s) ot dlt+s) (12a)
dy(s,t)  OX(t+s)0(t+s) OxX(t+ s)
os  Ot+s) 9s  O(t+s) (12b)

Equating Eqgs. (12a) and (12b) results in the following
PDE:

dy(s,t)  Oy(s,t)
5 = 9. 0 °F€ [—7,0] (13)

The boundary conditions for Eq. (13) can be computed

from Eq. (11) upon substituting s = 0 and s = —7:
y(0,) = x(t)

y(=7t) =x(t —7)

(14a)
(14b)
Differentiating Eq. (14a) with respect to ¢ provides

the following relationship between y(s,t) and the state
derivatives X(t):

Jy (s, 1) -
=x(t 1
S| =) (15)
Finally, we combine Eq. (14) with Eq. (8):
t _ _
ay((;, )| Ry(0,6) + BE y(—7,0) = 0 (16)
s=0

We now approximate the solution of the PDE given
in Eq. (13) with the following series:

yi(sat) = Z¢ij(s)nij(t)7 i=12,...,P (17)
j=1

where ¢;;(s) are the basis functions, 7;;(¢) are the coor-
dinates (which are time dependent), i is the index into
the state vector X(t), and j is the corresponding term
in each basis function. In this work, we use shifted La-
grange polynomials as the basis functions:

p1(s) =1 (18a)

Pa(s) =1+ % (18b)

bils) = (2k —3) ¢>2(5)¢>k—kl (;9)1— (k—2) ¢k—2(3),
k=3,4,...,N (18c)

Shifted Lagrange polynomials are selected for their
superior convergence properties, as shown in previous
studies (e.g., [36]). We truncate the infinite series
(Eq. (17)) at N terms:

yi(s,t) ~ ¢y (s)m,(t), i=1,2,...,P (19)
where ¢;(s) £ [¢i1(s), dia(s), - $in ()] and n; (1) £
(i1 (8), mi2(£), - .., min (8)] . For simplicity of notation,
we define the following:

¢1(s) 0 0
B(s) 2 ’ ¢2:(S) ) O € RVPXF (20a)
00 pals)
B 2 [ (0. (0),...E@] RV (200)
and express Eq. (19) in vector form:
y(s.1) = [T (I (1), 3 (ma(t). ... Sh)mp(0)]
= @7 (s)B(1) (21)

We now obtain a system of ODEs by substituting the
series solution (Eq. (21)) into the PDE (Eq. (13)), pre-
multiplying the result by ®(s), and integrating over the
domain s € [—T,0]:

Gp(t) = HA(t) (22)
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where G and H are square, block-diagonal matrices of
dimension N P:

c® o ... o 1"
0o g® ... o
G = : ;
0 0 .G
rHO o ... o 17
0 H® ... o
H=2 (23)
| 0 0 H&P)_

Submatrices G and H® are defined as follows:

0 0
G2 [ 6i(s)0i (s)ds, HOE [ 6i(s)6(s)"ds
(24)

where ¢/(s) denotes the derivative of ¢;(s) with respect
to s. Note that the use of shifted Lagrange polynomials
as basis functions allows us to express submatrices G (%)
and H® in closed form [36].

The boundary conditions that transform the ini-
tial value problem into an initial-boundary value prob-
lem are obtained by substituting Eq. (11) into Eq. (8),
where y(s,t) is given by Eq. (21):

®T(0)B(t) + [A®T(0) + bkT®T(-7)] B(t) =0 (25)

We embed the boundary conditions (Eq. (25)) into the
ODE system (Eq. (22)) using the spectral-tau method:

GA(t) = HB(1) + KB(1) (26)
where G, I:L and K are the matrices obtained upon
replacing every iN-th row of Eq. (22) with the i-th
row of Eq. (25) for ¢ = 1,2,..., P. Finally, we define

. T
state vector ¢ = [ﬁ(t)T,,B(t)T} and rewrite Eq. (26)
as follows:

¢(t) = Z¢(1) (27)
where the eigenvalues of Z can be used to study the
stability of the system.

Equation (27) is a system of ODEs whose response
approximates that of the original system of DDEs
(Eq. (8)). As N (the number of terms retained in the
series solution, Eq. (19)) increases, the eigenvalues of
Z converge to the characteristic roots of Eq. (8) [36].
We define the absolute error e as the value of the
characteristic equation (Eq. (10)) upon substitution
of the eigenvalues of Z. In this work, we define the
convergence criterion to be € < 10~% and, thus, obtain
the spectrum of the original DDE system (Eq. (8))
from the ODE system (Eq. (27)).

4 Problem Definition

Consider the second-order system given by Eq. (1).
Given M, C, K, and 7, we wish to determine the feed-
back gains f and g that place all roots in the left half of
the complex plane and create a specified spectral gap
between the rightmost root and the imaginary axis. We
find the gains f and g by minimizing the following ob-
jective function:

J = (Re {Amax(f, )} + @) (28)

where Re {\ax} is the real part of the rightmost eigen-
value, which is a function of feedback gains f and g,
and a > 0 is the desired spectral gap. If a solution
(f*,g*) is obtained where J(f*,g*) = 0, then the right-
most root is placed at the desired location—that is,
Re {Amax} = —a. However, if J(f*,g*) > 0, then the
rightmost root is not placed at the desired location (i.e.,
the spectral gap is less than «), but the precise loca-
tion of the rightmost root is still obtained and, thus, the
stability of the system can be determined. In practice,
it may be necessary to accompany the objective func-
tion (Eq. (28)) with constraints on the feedback gains f
and g. In Section 6, we solve a constrained optimization
problem whose constraints ensure the gains are within
a physically realizable range. In this work, the objec-
tive function given by Eq. (28) is minimized using the
particle swarm optimization (PSO) technique. PSO is
a widely used swarm-intelligence-based algorithm due
to its simplicity, flexibility, and ease of implementa-
tion [40].

5 Results and Discussion

In the domain of algebraic frameworks, the method
of receptances (MoR) has gained popularity because
it provides analytical expressions to solve the pole-
placement problem in systems governed by DDEs. In
this section, we demonstrate the strengths and limita-
tions of the MoR approach, and we employ Galerkin
approximations to obtain the characteristic roots
corresponding to the solutions obtained using MoR.
When the MoR approach does not achieve the desired
spectral gap, we use the proposed optimization-based
technique to improve the solution.

5.1 Example 1

Consider the system obtained upon substituting the fol-
lowing matrices into Eq. (1) (from [23]):

wo b o[ x-[27]) e
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We use MoR to place the eigenvalues of this system
at two location sets: S; = [~1, —144, 2] (from [23])
and Sy = [0.5,—1 %14, —2]. It was observed that, for
some delays 7 € [0.001,1.5], the system becomes un-
stable when the desired location of the rightmost roots
is S7. Using location set Ss, spillover of the dominant
roots still occurs but the system remains stable for the
entire range of 7. Galerkin approximations are used to
obtain the characteristic roots for this system, where
feedback gains f and g are obtained using MoR. Fig-
ure 1 illustrates the locations of the three rightmost
roots as delay 7 varies, using target pole locations S;
and Ss. As shown, spillover is evident in both cases—
that is, for some values of delay 7, the real part of the
rightmost root is not in the desired location. Specifi-
cally, for location set S; (Fig. 1(a)), there is always a
pole at —1 as desired but, for some delays 7, there is
also a pole to the right of —1; in the case of location
set Sy (Fig. 1(b)), there is a pole at —0.5 as desired
but there is also a pole to the right of —0.5 for some
values of delay 7. It is important to note that, in some
situations, spillover of the dominant roots will result in
an unstable closed-loop system.

We now solve the pole-placement problem for the
same system using the proposed optimization-based
strategy. Figure 2 illustrates the location of the
rightmost root as delay 7 varies, using @« = 1 and
a = 0.5 in the objective function (Eq. (28)). These
values of « correspond to the spectral gaps described
by location sets S and Sz. When oo = 0.5 (Fig. 2(b)),
Re{Amax} =~ —0.5 for all delays 7—a substantial
improvement over the performance of the MoR ap-
proach. An improvement is also observed when o = 1
(Fig. 2(a)): although spillover still occurs over a similar
range of 7, the deviation from the desired pole location
is reduced significantly. Similar results are observed
when using different optimization parameters, such as
the relative tolerance and the number of generations.
Because Galerkin approximations are used in the
proposed optimization-based strategy, the stability
of the system can be evaluated in cases of spillover
without requiring any additional analysis.

5.2 Example 2

We now consider a second-order example given in Ram
et al. [23], where M =1, C=0.01, K=5,and b=1
in Eq. (1):

Z(t) + 0.01&(t) + 5x(t) = fe(t —7) + gzt —7)  (30)

where delay 7 > 0. We again compare the performance
of the MoR approach with that of the optimization-
based strategy, using a location set of S £ [—0.5, —47]

for the former and o = 0.5 for the latter. Figure 3
illustrates the locations of the two rightmost roots
of Eq. (30) as delay 7 varies, with feedback gains f
and g determined using the MoR approach and the
optimization-based strategy. We observe spillover using
the MoR approach (Fig. 3(a)) when 7 € [0.093,0.210]
and 7 > 0.838, resulting in instability for delays ex-
ceeding 1.134 seconds. By contrast, there is no spillover
of the rightmost root for any value of 7 and the system
is never unstable when the optimization-based strategy
is used (Fig. 3(b)).

6 Experimental Validation

We validated the proposed approach experimentally us-
ing a 3D hovercraft apparatus (Quanser Inc., Markham,
Ontario, Canada), as shown in Fig. 4. The hovercraft
is a decoupled system—that is, its motion about the
yaw, pitch, and roll axes is decoupled. Our experiments
comprised motion about only the yaw axis, which nev-
ertheless required coordination of all four motors. The
experimental apparatus has an inherent time delay of
2 ms, which is well below the critical delays encoun-
tered in this study. The equation governing the motion
of this system about the yaw axis is given as follows [1]:

0, = —0.1304(f0,(t — ) + g0, (t — 7)) (31)

where 60, is the yaw angle. As shown in Fig. 5(a), the
feedback gains f and g computed using the MoR ap-
proach result in an unstable system for delays exceed-
ing 7 = 131 ms. The optimization-based strategy (with
a = 6) increased the amount of delay that can be tol-
erated to 7 = 194 ms (Fig. 5(b)).

To validate these results, we deliberately introduced
a delay into the experimental system and computed
feedback gains using the proposed optimization-based
strategy for four values of 7: 131 ms, 140 ms, 150 ms,
and 160 ms (Table 1). The system response for a delay
of 7 = 131 ms is shown in Fig. 6(a). A square waveform
input of magnitude 4+5° was provided as the reference
trajectory. Clearly, the feedback gains obtained using
the optimization-based strategy resulted in a stable sys-
tem; gains obtained using the MoR approach result in
instability. Figures 6(b) and 7 illustrate the system re-
sponse for the same reference signal when the delay
is increased beyond 131 ms. As shown, the system re-
sponse remains stable in all cases. The motor voltages
for a delay of 160 ms (corresponding to the yaw angle
shown in Fig. 7(b)) are shown in Fig. 8.
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Fig. 1 Locations of the four roots of Eq. (1) as delay 7 varies, using MoR with location sets (a) S1 and (b) S3. Matrices M,

C, and K are given by Eq. (29).
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Fig. 2 Location of the rightmost root of Eq. (1) as delay 7 varies, using the proposed optimization-based strategy with (a)
a =1 and (b) a = 0.5. Matrices M, C, and K are given by Eq. (29). The rightmost roots from Fig. 1 are shown for comparison

(dashed lines).

Table 1 Feedback gains obtained using the proposed
optimization-based strategy for the 3D hovercraft apparatus.

Feedback gains

Delay 7 (ms) f g

131 44.2624 111.8034
140 43.2896  111.8034
150 42.2095 111.8034
160 41.1300 111.8034

7 Conclusions and Future Work

In this work, a hybrid method-of-receptances and
optimization-based technique has been proposed to
solve the pole-placement problem in time-delayed

systems. Using examples from the literature, it has
been demonstrated that the MoR approach can place
the dominant root to the right of the specified location,
resulting in a deficient spectral gap and potentially
an unstable closed-loop system. An optimization-
based strategy is proposed to complement the MoR
approach by providing improved feedback gains for
those delays where the MoR solution is unacceptable.
The efficacy of this strategy was demonstrated using
examples from the literature. Experimental validation
was performed using a 3D hovercraft apparatus with
a deliberately introduced delay. We demonstrated
that the optimization-based strategy was able to
stabilize the hovercraft for delays exceeding those
that can be accommodated by the MoR approach.
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Fig. 3 Locations of the rightmost roots of Eq. (30) as delay 7 varies: (a) the two rightmost roots obtained using the MoR
approach, and (b) the rightmost root obtained using the proposed optimization-based strategy with o = 0.5. The rightmost
root from panel (a) is displayed in panel (b) for comparison (dashed line).
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Propeller D i .
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Propeller B

Linear voltage amplifier

Fig. 4 3D hovercraft apparatus used for experimental validation.

Thus, the proposed hybrid method-of-receptances and
optimization-based technique expands the range of
time-delayed systems to which pole placement can be
applied.

Directions for future work include extending the
method of receptances to handle higher-order systems,
time-varying delays, and constraints imposed by system
parameters, actuator saturation, and limits on feedback
gains. These constraints can be readily incorporated
into the optimization-based technique to study in detail

their effects on system stability. The effects of delays in
the output equations will also be investigated.
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