


generated by maximally-activated biological muscle with mean absolute errors less than 8.9%, 8.9%,

and 20.9% of the maximum isometric muscle force, respectively. When compared to forces gener-

ated by submaximally-activated biological muscle, the forces produced by the equilibrium, damped

equilibrium, and rigid-tendon models have mean absolute errors less than 16.2%, 16.4%, and 18.5%,

respectively. To encourage further development of musculotendon models, we provide implementa-

tions of each of these models in OpenSim version 3.1 and benchmark data at simtk.org, enabling others

to reproduce our results and test their models of musculotendon dynamics.

1 Introduction

Researchers interested in understanding the physiological basis of human and animal movement have

performed an extensive range of experiments at many different scales. Physiologists have studied iso-

lated muscle to characterize activation dynamics, force development, and muscle–tendon contraction

dynamics. At the other end of the spectrum, biomechanists have studied whole-body movement by

measuring and analyzing joint motions, ground reaction forces, and electromyographic signals from

thousands of subjects. Our understanding of human and animal movement would advance appreciably

if it were not so challenging to reconcile experimental measurements of isolated muscle with biome-

chanical measurements of whole-body motion. This challenge exists, in part, because it is extremely

difficult to measure important neuromuscular quantities (including muscle forces, muscle fiber lengths,

and tendon strains) for the many muscles involved in the production of movement.

Muscle-driven dynamic simulations of movement augment experimental approaches to study move-

ment. Muscle-driven simulations include mathematical models of muscle activation and contraction

dynamics and allow calculation of muscle forces, fiber lengths, and other parameters that are not easily

measured. Over the past two decades, muscle-driven simulations have been used in a wide variety of ap-

plications, including the analysis of human walking [1–6],running [7,8], jumping [9], cycling [10,11],

pathological gait [12–16], functional electrical stimulation [17], orthopaedic surgeries [18], and work-

place ergonomics [19].

Muscle-driven simulations rely on computational models ofmusculotendon dynamics. There are

two broad classes of musculotendon models: cross-bridge models [20–22] and Hill-type models [23–

25]. Although cross-bridge models have the advantage of being derived from the fundamental structure

of muscle [22], these models include many parameters that are difficult to measure and are rarely used
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in muscle-driven simulations that include many muscles. Wefocus here on Hill-type models because

they are widely used in muscle-driven simulations [1–19].

Musculotendon models that are computationally fast and biologically accurate are required to simu-

late human movement. While other branches of computationalmechanics have established benchmark

problems to compare the speed and accuracy of various models(e.g., in multibody dynamics [26] and

contact mechanics [27, 28]), there are no analogous benchmark simulations for testing the speed and

accuracy of musculotendon models. The lack of benchmark problems and comparative data from ex-

periments has hindered the advancement of computational biomechanics.

The purpose of this paper is to compare the computational speed and biological accuracy of three

musculotendon models. We first describe the equilibrium musculotendon model that is commonly

used in muscle-driven simulations of movement. We then derive two alternative models: a damped

equilibrium model and a rigid-tendon model. We compare the computational speed of each musculo-

tendon model by simulating musculotendon dynamics over theoperational range of the muscle using

constant-activation, sinusoidal-displacement tests. Weevaluate the biological accuracy of the equilib-

rium, damped equilibrium, and rigid-tendon models by comparing the simulated musculotendon forces

to those measured experimentally from isolated rat soleus [29] and cat soleus [30] muscles. Analysis of

these results allows us to make usage recommendations. To enable others to reproduce and extend our

work, we have implemented these models in OpenSim version 3.1, an open-source software system for

analyzing musculoskeletal dynamics [31–33]. We also provide benchmark data at simtk.org so that the

computational speed and biological accuracy of other musculotendon models can be evaluated.

2 Musculotendon Models

Since biological muscle is complex, many simplifications are made when developing musculotendon

models. Musculotendon actuators are assumed to be massless, frictionless, extensible strings that attach

to, and wrap around, bones and other structures. The fiber geometry is simplified [23] by assuming

that all muscle fibers are straight, parallel, of equal length, and coplanar (Fig. 1). Biological muscle

maintains a constant volume [34]; to mimic this property, the area and height of the fiber geometry

(shaded gray in Fig. 1) are also assumed to be constant. The angle the fiber makes with the tendon

(the pennation angle, α) is varied so that the muscle maintains a constant heighth. Data reported

by Randhawa et al. [35] indicate that biological pennated muscle becomes thinner under load, which
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Muscle

Fibers

Tendon

Figure 1. Simplified geometric representation of muscle fibers and tendon for musculotendon model-

ing. Muscle fibers are assumed to be straight, parallel, of equal length, coplanar, and attached to tendon

at a pennation angle (α). As the muscle shortens, the distanceh remains constant and the pennation

angle increases. Adapted from Zajac [23].

suggests that the height of a pennated muscle model should vary. The fixed-height approximation is

likely to introduce errors for muscles that bulge appreciably as they flex [36]. Nevertheless, the fixed-

height approximation is used here (described in Sec. 2.4).

In addition to these geometric simplifications, two assumptions are made to simplify the modeling

of force generation. First, the tensile force developed by amuscle is assumed to be a scaled version of

the force developed by a single representative fiber. This assumption allows us to represent musculo-

tendon actuators with a wide range of architectures (e.g., fiber lengths, pennation angles, and maximum

isometric forces) with a single dimensionless model [23, 37]. Second, the force generated by a fiber

is assumed to be a function of only its activation, length, and velocity, each of which is assumed to

modulate force production independently. This assumptionallows one to first compute the activation

resulting from neural excitation (activation dynamics), and then use this result to compute the muscle

force (contraction dynamics), as illustrated in Fig. 2.
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Figure 2. Muscle-driven simulations use a model of musculotendon contraction dynamics to deter-

mine muscle lengths (ℓM), velocities (vM), and forces (fM) from neural excitations (u), generalized

coordinates (q), and generalized speeds (q̇). A model of activation dynamics determines muscle activa-

tions (a) from neural excitations (u). A musculoskeletal model determines musculotendon lengths and

velocities (ℓMT andvMT) from the generalized coordinates and speeds (q and q̇). The model of mus-

culotendon contraction dynamics uses the results of the activation dynamics and the musculoskeletal

model to produce a forward simulation of muscle length (ℓM), velocity (vM), and force (fM).

2.1 Activation Dynamics

Our models use a simplified first-order activation dynamic model [38,39], though more detailed models

of activation dynamics exist [40]. We compute activationa from neural excitationu:

â =
a− amin

1− amin

(1)

ȧ =
u− â

τ
(2)

τ =











τA (0.5 + 1.5â) if u > â

τD
0.5 + 1.5â

otherwise
(3)

whereτA andτD are, respectively, the activation and deactivation time constants, which are set to10 ms

and40 ms by default [39]. We have modified the conventional activation state equation [23] so that

activation smoothly approaches an adjustable nonzero lower bound (amin), which is necessary to avoid

a numerical singularity in the equilibrium musculotendon model (see below).

2.2 Equilibrium Musculotendon Model

Musculotendon actuators consist of an active contractile element, a passive elastic element, and an elas-

tic tendon (Fig. 3A). Active tension develops when the nervous system excites muscle. The maximum
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active force a muscle can develop varies nonlinearly with its length, represented by theactive-force–

lengthcurvef L(ℓ̃ M) (Fig. 3C), peaking at a force offM
o at a length ofℓMo (the tilde is used to denote

forces, velocities, muscle lengths, and tendon lengths that are normalized byfM
o , vM

max, ℓ
M
o , andℓTs , re-

spectively). During non-isometric contractions, the force developed by muscle varies nonlinearly with

its rate of lengthening, which is represented by theforce–velocitycurvefV(ṽM) (Fig. 3D). Force is also

developed when the muscle is stretched beyond a threshold length, regardless of whether the muscle

is activated, which is represented by thepassive-force–lengthcurvef PE(ℓ̃ M) (Fig. 3C). Muscle force

(fM) is computed using these curves as follows:

fM = fM
o

(

a f L(ℓ̃M) fV(ṽM) + f
PE(ℓ̃M)

)

(4)

wherea is the muscle activation, which ranges fromamin to 1.

Muscle attaches to bone through tendon. Since a long tendon may stretch appreciably beyond its

slack length (ℓTs ) when under tension, tendon is modeled as a nonlinear elastic element developing

force according to thetendon-force–lengthcurvef T(ℓ̃ T) (Fig. 3B). Muscle fibers attach to tendon at a

pennation angle (α), scaling the force they transmit to the tendon. If the tendon is assumed to be elastic

and the mass of the muscle is assumed to be negligible, then the muscle and tendon forces must be in

equilibrium (i.e.,fM cosα− f T = 0):

fM
o

(

a f L(ℓ̃M) fV(ṽM) + f
PE(ℓ̃M)

)

cosα− fM
o f

T(ℓ̃ T) = 0 (5)

Muscle and tendon force development curves (boldface in Eqns. 4 and 5) are expressed as functions of

dimensionless length (ℓ̃ M andℓ̃ T), velocity (̃vM), and force (normalized byfM
o ) so they can be scaled

to model a variety of human and animal muscles [23, 37]. We have developed default force curves

for the musculotendon model that have been fit to experimental data [41–46]. These curves can be

adjusted to model muscle and tendon whose characteristics deviate from these default patterns. For

example, the tendon strain developed at one normalized force can be adjusted by changing a single

parameter, which proportionally scales the entire tendon-force–length curve along the horizontal axis

(Fig. 3B). We used quintic Bézier splines [47] to representthe force development curves for three

reasons: Bézier splines areC2-continuous (i.e., continuous to the second derivative), which is required

if a derivative-based algorithm (e.g., Newton’s method) will be operating on the musculotendon models;

Bézier splines respect the bounds defined by their control points; and Bézier splines are expressive yet

straightforward to modify.
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Figure 3. Schematic of equilibrium musculotendon model (A), tendon-force–length curve (B), active-

and passive-force–length curves (C), and force–velocity curve (D). Experimental data for the tendon-

force–length curve in panel B are illustrated as 95% confidence intervals [41,42]. Data points in panels

C and D denote experimental data for the force–length [43,44] and force–velocity [45,46] curves. The

default curves used in the musculotendon models are shown incomparison to these experimental data.

Note thatf̃M andf̃ T represent, respectively, muscle force and tendon force normalized byfM
o .
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In a forward-dynamic simulation, the force generated by a musculotendon actuator must be calcu-

lated given the length (ℓM), velocity (vM), and activation (a) of the muscle. Equation 5 alone cannot

be used to solve for the muscle force because multiple combinations of muscle length and velocity will

satisfy the equation. A unique solution can be found by solving Eqn. 5 for the normalized muscle ve-

locity (ṽM) to obtain an ordinary differential equation, which can then be integrated to simulate muscle

contraction [23]:

ṽM = f
V
inv

(

f
T(ℓ̃ T)/ cosα− f

PE(ℓ̃M)

a f L(ℓ̃M)

)

(6)

wherefVinv is the inverse of the force–velocity curve. Although Eqn. 5 is devoid of numerical singulari-

ties, Eqn. 6 has four: asα → 90◦, asa → 0, asf L(ℓ̃M) → 0, and as∂fV(ṽM)/∂ṽM → 0. Since these

conditions are often encountered during a simulation, the quantities causing singularities in Eqn. 6 are

altered so that the singularities are approached but never reached:α < 90◦, a > 0, f L(ℓ̃M) > 0,

and∂fV(ṽM)/∂ṽM > 0. Although these modifications avoid numerical singularities, Eqn. 6 becomes

numerically stiff when these singularities are approached, which slows the process of numerical in-

tegration. The effect of these near-singularities on simulation time is so onerous that lower bounds

of a ≥ 0.01 [39] andf L(ℓ̃ M) > 0.1 [39, 48] have been used, which deviate substantially from their

physiological values of0.

Without modifying the formulation of the equilibrium model, the muscle is able to reach unrealisti-

cally short lengths [39] and cannot be simulated when fully deactivated. We use a unilateral constraint

on muscle length to prevent the muscle from becoming unrealistically short:

ṽM =











0 if ℓ̃M ≤ ℓ̃M
min and ṽM∗ < 0

ṽM∗ otherwise
(7)

whereṽM∗ is a candidate value for̃vM computed using Eqn. 6. We define the minimum permissible

muscle length as the greater of the minimum active muscle length (defined by the active-force–length

curve) and the length of the muscle when it is pennated by84.26◦ (arccos(0.1)). We use a maximum

pennation angle of84.26◦ because higher pennation angles increase simulation time without improving

accuracy. The muscle length and pennation angle constraints are important because they ensure that

the muscle length has a realistic lower bound, and that Eqn. 6does not become numerically stiff as a

pennation angle of90◦ is approached.

BIO-12-1561 8 Millard et al.



2.3 Damped Equilibrium Musculotendon Model

The singularities in Eqn. 6 arise because Eqn. 5 is formulated in such a way that prevents the muscle

from satisfying the equilibrium equation when it is deactivated (i.e.,a = 0) or when a nonzero tendon

force is applied to a maximally-pennated muscle (i.e.,f T > 0 andα = 90◦). We address these two

problems by limiting the maximum pennation angle and introducing a damper in parallel with the

contractile element, which results in the damped equilibrium musculotendon model. Though strong

damping forces have not been observed duringin vivo human experiments [49], it is reasonable to

assume that muscle is lightly damped, given its high water content of82.3% [50]. The addition of the

damper (with damping coefficientβ) results in the following damped equilibrium equation:

fM
o

(

a f L(ℓ̃M) fV(ṽM) + f
PE(ℓ̃M) + βṽM

)

cosα− fM
o f

T(ℓ̃ T) = 0 (8)

Since muscle lengthℓM is a state, Eqn. 8 can be readily and uniquely solved forṽM using a derivative-

based root-finding algorithm such as Newton’s method, provided all the force development curves

(f L(ℓ̃M), fV(ṽM), f PE(ℓ̃ M), andf T(ℓ̃ T)) areC2-continuous. The damped equilibrium musculotendon

model of Eqn. 8 should generate force profiles that are similar to those generated by the equilibrium

model described by Eqn. 5, but in a fraction of the simulationtime because the damped equilibrium

model is free of numerical singularities. We set the defaultdamping coefficient to a value (β = 0.1)

that reduces simulation time without generating large damping forces (damping forces are0.1fM
o at

vM
max). Note that we use a constraint (as in Eqn. 7) to enforce a lower bound on the fiber length and to

prevent Eqn. 8 from becoming numerically stiff as a pennation angle of90◦ is approached.

2.4 Rigid-Tendon Musculotendon Model

Some tendons are so stiff that they can be treated as inextensible, effectively replacing the tendon

spring in Fig. 3A with an inextensible cable. The tendon inextensibility assumption is appropriate

only when the tendon does not stretch sufficiently to affect the normalized length of the contractile

element; the validity of this assumption will be explored using a benchmark simulation in Sec. 3. This

modeling simplification makes it possible to determine the muscle length (ℓM) and velocity (vM) from

the musculotendon length (ℓMT) and velocity (vMT) using a kinematic model of the musculotendon

actuator (Fig. 3A):

ℓMT = ℓT + ℓM cosα (9)
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Differentiating Eqn. 9 with respect to time yields a relation between the muscle, tendon, and musculo-

tendon actuator velocities:

vMT = vT + vM cosα− ℓMα̇ sinα (10)

wherevT = 0 if the tendon is rigid. The length of the muscle (ℓM) and its orientation (α) are coupled

by the fixed-height-parallelogram pennation model (Fig. 1):

ℓM sinα = h (11)

The constant height of the parallelogram (h) is computed using the optimal muscle length and pennation

angle:

h = ℓMo sinαo (12)

Differentiating Eqn. 11 with respect to time yields an expression that can be used to calculate the

pennation angular velocity:

α̇ = −
vM sinα

ℓM cosα
(13)

Since the tendon length and velocity are known (i.e.,ℓT = ℓTs andvT = 0), we use Eqns. 9 and 11

to solve for muscle length (ℓM) given musculotendon length (ℓMT), and Eqns. 10 and 13 to solve for

muscle velocity (vM) given musculotendon velocity (vMT). As with the elastic-tendon models, we use

the unilateral constraint of Eqn. 7 to enforce a lower bound of ℓMmin on muscle length. We compute the

force generated by the muscle directly:

fM∗ = fM
o

(

a f L(ℓ̃ M) fV(ṽM) + f
PE(ℓ̃ M) + βṽM

)

cosα (14)

Light damping (β = 0.1 by default) is included in this rigid-tendon muscle model. Since a muscle can

generate only tensile force, we constrain Eqn. 14 to remain positive:

fM =











fM∗ if fM∗ > 0

0 otherwise
(15)

3 Computational and Biological Benchmarks

We performed four benchmarks to measure the speed and accuracy of each musculotendon model.

Each musculotendon model implementation was confirmed to conserve energy during simulation. All

benchmark simulations were performed on a 2.20-GHz, 64-bitlaptop with 8.00 Gb of memory.
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Figure 4. Schematic of the musculotendon actuator used in the elastic-tendon and rigid-tendon com-

putational benchmarks. In the simulations, the initial length of the musculotendon actuator was set to

c1 = ℓTs + ℓMo cosαo and then the length was varied byc2 sin 2πt.

Elastic-Tendon Computational Benchmark

In the first benchmark simulation, we determined the differences in computational speed and force re-

sponse between the equilibrium model and the damped equilibrium model over a range of activation

values. The musculotendon actuator consisted of a short, pennated muscle (ℓMo = 2 cm andαo = 30◦)

and a long tendon (ℓTs = 20 cm) (Fig. 4). Eleven constant-activation, sinusoidal-displacement simula-

tions were performed using each elastic-tendon musculotendon model, with activations varying from0

(0.01 for the equilibrium model) to1 in increments of0.1. The muscle and tendon force curves shown

in Fig. 3 were used for each model; the initial length of the musculotendon actuator wasℓTs + ℓMo cosαo

(Fig. 4). Each muscle was initialized using the routine described in App. A, then lengthened and

shortened by applying a sinusoidal displacement to the freeend of the tendon. A period of1 s and

an amplitude ofℓMo (i.e., ℓMT(t) =
(

ℓTs + ℓMo cosαo

)

+ ℓMo sin 2πt) resulted in a fiber length change

of approximately±0.5ℓMo and fiber velocities of approximately−0.55vM
max to 0.75vM

max. Numerical

simulations were performed using explicit (Runge–Kutta–Merson [51]) and implicit (CPODES [52])

integrators. Integrator tolerances were chosen for each combination of model and integrator to pro-

duce force profiles with mean absolute errors less than 0.1% of fM
o (at all activations) when compared

to highly accurate (10−12 tolerance) simulation results obtained using the explicitintegrator. The dif-

ferences between the normalized force profiles generated bythe equilibrium and damped equilibrium

musculotendon models were recorded. We calculated the real-time fraction as the quotient of wall

clock time and the amount of time simulated; a real-time fraction less than1 indicates that the simula-

tion completed faster than real time.

The damped equilibrium model produced force profiles that were within 2% of those produced by

the equilibrium model (Fig. 5); however, the damped equilibrium model generally simulated faster at
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Figure 5. Normalized tendon force profiles of the equilibrium (left) and damped equilibrium (right)

musculotendon models. Each muscle underwent constant-activation, sinusoidal-displacement simula-

tions of 1-second duration with activations varying from 0 (0.01 for the equilibrium model) to 1 in

increments of 0.1. The average absolute difference betweennormalized force profiles generated by the

models was less than 0.3% at low activation and less than 2.5%at high activation.

all activation levels and with either integrator (Fig. 6). The damped equilibrium model was 1–29 times

faster than the equilibrium model when using the explicit integrator and 1–3 times faster when using

the implicit integrator. The damped equilibrium model alsoexhibited simulation times with the lowest

mean and standard deviation, completing in92 ± 10 ms and73 ± 12 ms when using the explicit and

implicit integrators, respectively. In contrast, the equilibrium model required315 ± 539 ms (explicit)

and89 ± 27 ms (implicit) to simulate. Thus, a system using the damped equilibrium musculotendon

model can be expected to simulate in a consistent amount of time across a wide variety of operating

conditions.

Rigid-Tendon Computational Benchmark

Simulations of muscle with a rigid tendon were used to determine the differences in computational

speed and force response between the damped equilibrium andrigid-tendon models over a range of

tendon-to-fiber length ratios. The musculotendon actuatormodeled in this benchmark was similar to

that shown in Fig. 4, but consisted of a short, non-pennated muscle (ℓMo = 2 cm andαo = 0◦). Ten
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Figure 6. Time required to generate the simulation results shown in Fig. 5 using explicit (left) and

implicit (right) integrators. Wall clock time was divided by the amount of time simulated to obtain the

real-time fraction; values below1 indicate that the simulations completed faster than real time.

maximal-activation, sinusoidal-displacement simulations were performed using each musculotendon

model, with tendon slack lengths varying from only a small fraction of the optimal fiber length (ℓTs =

10 · 2−9ℓMo ≈ 0.0195ℓMo ) to substantially longer than the optimal fiber length (ℓTs = 10ℓMo ), with the

tendon slack length doubling from one simulation to the next. A sinusoidal displacement of period

1 s and amplitude0.5ℓMo was used, which resulted in a fiber length change of approximately ±0.5ℓMo .

Numerical simulations were performed using the same integrators and accuracies used in the elastic-

tendon computational benchmark, and the same metrics were computed.

The rigid-tendon model generated force profiles that matched those generated by the damped equi-

librium model to within0.05fM
o (on average) whenℓTs < ℓMo (Fig. 7), and did so with greater com-

putational speed (Fig. 8). As the tendon length increased beyond the optimal fiber length, however,

the force profiles produced by the rigid- and elastic-tendonmodels diverged rapidly. In addition, Fig. 8

shows that the computational speed was largely dependent onthe choice of integrator. The rigid-tendon

model was 2–54 times faster than the elastic-tendon model when using the explicit integrator, and 6–31

times faster when using the implicit integrator.
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Figure 7. Differences in force profiles generated by rigid-tendon anddamped equilibrium musculoten-

don models as a function of tendon slack length (ℓTs ) normalized by the optimal fiber length (ℓMo ). The

force profiles were obtained using maximal-activation, sinusoidal-displacement simulations. The mean

(solid curve) and standard deviation (shaded area) of the absolute difference in force profiles over the

duration of each simulation show that errors in the rigid-tendon model increase rapidly as normalized

tendon slack length increases.
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Figure 8. Computational speed of the damped equilibrium (black curve) and rigid-tendon (gray curve)

musculotendon models as functions of tendon slack length (ℓTs ) normalized by the optimal fiber length

(ℓMo ) using explicit (left) and implicit (right) integrators. Wall clock time was divided by the amount of

time simulated to obtain the real-time fraction; values below 1 indicate that the simulations completed

faster than real time.

Maximal-Activation Biological Benchmark

We compared the force profiles generated by the equilibrium,damped equilibrium, and rigid-tendon

models to those produced by maximally-activated rat soleusmusclein vivo, using the experimental data

of Krylow and Sandercock [29]. This data set consisted of sixexperimental trials, each beginning with

the muscle deactivated and2 mm shorter than its optimal length. The muscle was then maximally ac-

tivated and stretched, displacing the muscle through a range that is consistent with ambulation (Fig. 9).

The six trials were identical except for the amplitude of thedisplacement; the maximum amplitudes

were0.05, 0.1, 0.25, 0.5, 1.0, and2.0 mm. While the optimal fiber length (ℓMo = 17.1 mm) and max-

imum isometric force (fM
o = 1.17 N) were reported by Krylow and Sandercock [29], several other

parameters required by the musculotendon model were not. Weassumed a pennation angle ofαo = 6◦

and a tendon slack length ofℓTs = ℓMo based on measurements of rat soleus muscle architecture [53]; the

muscle and tendon force curves shown in Fig. 3 were used. We used a Nelder–Mead [54] optimization

algorithm to tune the maximum isometric force (fM
o ) and identify the maximum contraction velocity

(vM
max) and activation time constant (τA) for each musculotendon model; the damping coefficient (β)
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Figure 9. Waveform of the change in musculotendon length [29] used in the maximal-activation bio-

logical benchmark, shown here with a maximum length change of 1.0 mm. This waveform was scaled

by the appropriate maximum length change, added toℓTs +ℓMo cosαo−2 mm, and then used to prescribe

the displacement of the free end of the tendon.

was also identified for the damped equilibrium and rigid-tendon models. The force profile generated

by each musculotendon model was fit to the experimental trialof amplitude2.0 mm by minimizing the

mean absolute error over the duration of the simulation, as specified by the objective functionJ :

J =
1

N

N
∑

i=1

∣

∣fM
i,model − fM

i,experiment

∣

∣ (16)

whereN = 2001 is the number of data points, which were sampled at 1-millisecond intervals. We used

the remaining five trials in this data set (corresponding to amplitudes between0.05 mm and1.0 mm)

to evaluate the performance of each musculotendon model using the optimized parameters.

The damped equilibrium model produced forces that were similar to those produced by biological

(rat soleus) muscle that was maximally activated. The forceprofile corresponding to a maximum

amplitude of2.0 mm (Fig. 10, bottom) was used to adjust the maximum isometric force (1.27 N)

and identify the maximum contraction velocity (5.50 ℓMo /s), activation time constant (22.8 ms), and

damping coefficient (0.016). The mean absolute error between the simulated and experimental force

profiles corresponding to an amplitude of2.0 mm was 8.9% (expressed as a percentage offM
o measured

experimentally), which is comparable to that obtained by Krylow and Sandercock (6.1%) [29]. The

identified parameters resulted in simulations that compared favorably with experimental data collected

using different amplitudes as well (Fig. 10). The mean absolute errors for the remaining trials were

between 3.3% and 6.7%; Krylow and Sandercock [29] reported corresponding errors between 3.9%

and 8.6%. The equilibrium model had similar optimal parameters (fM
o = 1.28 N, vM

max = 5.32 ℓMo /s,

andτA = 24.0 ms) and similar errors (8.9% for the trial of amplitude2.0 mm, and between 3.0% and

6.7% for the other trials). Using the rigid-tendon model, weobtained substantially different optimal
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parameters (fM
o = 1.20 N, vM

max = 9.86 ℓMo /s, τA = 37.8 ms, andβ = 0.024) and larger errors

(between 4.5% and 20.9%). Note that the mean absolute error obtained using the rigid-tendon model

was approximately the sum of the equilibrium model error andthe additional error introduced by the

rigid-tendon assumption (Fig. 7). The agreement between our simulation results and the experimental

data could be improved by fitting our model curves to the experimental data, as was done by Krylow

and Sandercock [29].

Submaximal-Activation Biological Benchmark

We compared the force profiles generated by the equilibrium,damped equilibrium, and rigid-tendon

models with forces measured from submaximally-activated cat soleus musclein vivo [30]. In the first

six experimental trials, the musculotendon actuator was held at a length ofℓTs + ℓMo cosαo − 4 mm

and excited using constant-frequency stimulation rates of10, 20, and30 Hz, and random stimulation

signals with mean frequencies of10, 20, and30 Hz, as described by Perreault et al. [30]. These

six trials were then repeated while applying length changeswith maximum amplitudes of1.0 mm

and 8.0 mm (±0.033ℓMo and±0.267ℓMo , respectively) to the free end of the tendon (Fig. 11). The

forces measured during the experimental isometric trials were filtered with a low-pass Butterworth

filter of cut-off frequency120 Hz and used to calculate the activation signals that must be applied

to each musculotendon model to elicit the same response; we then used these activation signals in

the 12 non-isometric simulations. Since it was not reportedby Perreault et al. [30], we assumed a

maximum isometric force offM
o = 25.1 N, which resulted in a maximum activation signal of1.0 over

the entire data set. We obtained estimates for the optimal fiber length (ℓMo = 30 mm), pennation angle

(αo = 7.5◦), and tendon slack length (ℓTs = 65 mm) from the measurements reported by Scott et

al. [55]; the muscle and tendon force curves shown in Fig. 3 were used.

The damped equilibrium model was capable of producing a response that approximates the response

of biological (cat soleus) muscle when submaximally activated, though the results were less accurate

than those obtained in the maximal-activation biological benchmark. The mean absolute errors between

the damped equilibrium model and experimental force profiles corresponding to amplitudes of1.0 mm

(left column in Figs. 12 and 13) and8.0 mm (right column) were less than 3.2% and 16.2%, respec-

tively (expressed as a percentage offM
o ). Perreault et al. [30] reported corresponding maximum mean

absolute errors of 3.5% and 17.7% using their rigid-tendon Hill-type model. The corresponding errors
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Figure 10. Comparison of experimental [29] (gray curve) and simulated(black curve) force profiles

from maximally-activated muscle undergoing length changes of maximum amplitude0.05 (top), 0.1,

0.25, 0.5, 1.0, and2.0mm (bottom). The maximum isometric force used in the model wasfM
o = 1.27 N

and the optimal fiber length wasℓMo = 17.1 mm.
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Figure 11. Waveform of the change in musculotendon length [30] used in the submaximal-activation

biological benchmark, shown here with a maximum length change of 1.0 mm. This waveform was

scaled by the appropriate maximum length change (either1.0mm or8.0mm), added toℓTs +ℓMo cosαo−

4 mm, and then used to prescribe the displacement of the free end of the tendon.

obtained using the equilibrium model were 3.3% and 16.4%, which are very similar to those obtained

using the damped equilibrium model. The rigid-tendon modelproduced errors of 5.5% and 18.5%.

4 Discussion

The development of muscle-driven simulations requires musculotendon models that are fast and accu-

rate. This paper evaluates the computational speed and biological accuracy of musculotendon models

and establishes benchmarks to accelerate future research.Our numerical results and the data required

to replicate our benchmarks are available at simtk.org.

We developed and tested three musculotendon models: the equilibrium model, the damped equilib-

rium model, and the rigid-tendon model. The damped equilibrium model produced forces that compare

favorably with those observed in maximally-activated biological muscle, and simulated faster than

the equilibrium model regardless of whether an explicit or implicit integrator was used. The rigid-

tendon model was fast and accurate when simulating a maximally-activated muscle with a short tendon

(ℓTs ≤ ℓMo ). Since neither the damped equilibrium model nor the rigid-tendon model contains numer-

ical singularities, it is possible to simulate deactivatedmuscle, use an active-force–length curve that

reaches zero, and use a force–velocity curve that includes aslope of zero. We developed and tested

another musculotendon model, named the acceleration model, that includes a small mass between the

tendon and muscle. Despite improving a previous formulation of this model [56], the acceleration

model was slower than the models presented above, so its results are not reported here. The source

code for the acceleration musculotendon model is availableat simtk.org.

The fastest simulations of an elastic-tendon model were obtained by pairing the damped equilibrium
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Figure 12. Comparison of experimental [30] (gray curve) and simulated(black curve) force profiles

from submaximally-activated muscle undergoing length changes of maximum amplitude1.0 mm (left)

and8.0 mm (right). Constant-frequency stimulation rates of10 (top), 20, and30 Hz (bottom) were

applied to the biological muscle. Force profiles measured experimentally during isometric trials were

used to determine the corresponding activation signals that must be applied to the damped equilibrium

musculotendon model. The maximum isometric force used in the model wasfM
o = 25.1 N and the

optimal fiber length wasℓMo = 30 mm.
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Figure 13. Comparison of experimental [30] (gray curve) and simulated(black curve) force profiles

from submaximally-activated muscle undergoing length changes of maximum amplitude1.0 mm (left)

and8.0 mm (right). Random stimulation signals were applied to the biological muscle, with mean

frequencies of10 (top), 20, and30 Hz (bottom), as described by Perreault et al. [30]. Force profiles

measured experimentally during isometric trials were usedto determine the corresponding activation

signals that must be applied to the damped equilibrium musculotendon model. The maximum isometric

force used in the model wasfM
o = 25.1 N and the optimal fiber length wasℓMo = 30 mm.
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model with the implicit integrator, though the explicit integrator was only marginally slower for these

single-muscle simulations. The performance advantage of using an implicit integrator to simulate an

equilibrium model is apparent from Fig. 6, and has been reported previously [48]. Note, however,

that the number of function evaluations performed by an implicit integrator increases with system

size [57], while the number of function evaluations required by an explicit integrator is independent

of system size. Therefore, it is likely that an explicit integrator will outperform an implicit integrator

when simulating a large number of muscles with the damped equilibrium model.

An important feature of our musculotendon models is that they can be scaled to represent muscles

with different architectures based on experimental measurements of optimal muscle fiber lengths, pen-

nation angles, and physiological cross-sectional areas [23,37]. We used this feature to scale the damped

equilibrium musculotendon model to represent rat soleus and cat soleus muscles, and provided com-

parisons between simulated forces and forces measured experimentally. Since the force produced by a

muscle depends on the muscle architecture, it is important to compare simulation results to experimen-

tal results obtained from muscles with different architectures. Our recommendation is to expand the

repository of biological benchmarks that can be used to testthe fidelity of musculotendon simulations.

Another feature of our musculotendon models is that they areimplemented in OpenSim [31–33],

an open-source software system for analyzing musculoskeletal dynamics. This feature allowed us to

further test our models by simulating walking dynamics using a whole-body musculoskeletal model

that includes over fifty muscles [3, 18, 58, 59], which is freely distributed with OpenSim. We repeated

the simulation using each of the three musculotendon modelsdescribed here. We found that the time to

simulate muscle-driven walking was dominated by the speed of the musculotendon model. A muscle-

driven simulation of walking using the rigid-tendon model was2.5 times faster than that using the

equilibrium model. An analogous simulation using the damped equilibrium model (which includes an

elastic tendon) was1.7 times faster than a simulation using the equilibrium model.

The musculotendon models described here have important limitations. First, all of the models ex-

hibit a region of negative stiffness on the descending limb of the active-force–length curve. This region

of negative stiffness can cause a musculotendon length instability during forward-dynamic simulations.

Second, although the damped equilibrium model was able to replicate the force profiles generated by

biological muscle at maximal activation (Fig. 10), the comparisons between the model and experimen-

tal force profiles at submaximal activation revealed largererrors (Figs. 12 and 13). Third, the forces

BIO-12-1561 22 Millard et al.



predicted by these models are dependent only on activation,length, and velocity, whereas the forces

generated by biological muscle depend on past states [60] and other variables, such as temperature [61]

and fatigue [62]. Fourth, the musculotendon models assume that all fibers within a musculotendon ac-

tuator are described by the same force–velocity curve, yet biological muscles are comprised of different

fiber types that have different contractile speeds. Finally, our musculotendon actuators assume that the

muscle fibers are straight, planar, parallel elements of equal length constrained to an area of constant

height (Fig. 1). This assumption may limit the accuracy withwhich muscle forces can be simulated,

especially for muscles that have variable fiber lengths and complex geometry.

We encourage researchers to develop musculotendon models that eliminate the limitations of our

models and provide biological benchmark data that can be used as a standard for comparison. Mus-

culotendon models published with software that implementsthe models will have the greatest impact.

Providing software will enable others to reproduce and extend published results, and use the novel

musculotendon models in muscle-driven simulations to gaininsight into the dynamics of human and

animal movement.
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Nomenclature

Symbol Definition

ℓMT length of the musculotendon actuator[m]

ℓM
{

ℓ̃ M
}

muscle length[m]

ℓMo length at which the muscle develops peak isometric active force[m]

ℓMmin

{

ℓ̃ M
min

}

minimum permissible muscle length[m]

ℓT
{

ℓ̃ T
}

tendon length[m]

ℓTs length at which the tendon begins to develop a tensile force[m]

vMT lengthening velocity of the musculotendon actuator[m/s]

vM
{

ṽM
}

muscle lengthening velocity[m/s]

vM
max maximum muscle contraction velocity[m/s]

vT
{

ṽT
}

tendon lengthening velocity[m/s]

fM
{

f̃M
}

muscle force[N]

fM
o peak isometric muscle force[N]

f T
{

f̃ T
}

tendon force[N]

f
L(ℓ̃M) normalized active-force–length curve of the muscle

[

N/fM
o

]

f
PE(ℓ̃ M) normalized passive-force–length curve of the muscle

[

N/fM
o

]

f
T(ℓ̃ T) normalized force–length curve of the tendon

[

N/fM
o

]

f
V(ṽM) normalized force–velocity curve of the muscle

[

N/fM
o

]

α muscle pennation angle[rad]

αo muscle pennation angle whenℓM = ℓMo [rad]

h pennated muscle height[m]

u muscle excitation[−]

a muscle activation[−]

amin minimum permissible muscle activation[−]

τA activation time constant[s]

τD deactivation time constant[s]

t time [s]

The braced symbols represent dimensionless quantities. Dimensionless forces, velocities, mus-

cle lengths, and tendon lengths have been normalized byfM
o , vM

max, ℓ
M
o , andℓTs , respectively.
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A Musculotendon Model Initialization

Model initialization describes the process of determiningthe length and velocity of the muscle, given its

activation and the length and velocity of the musculotendonactuator. The ideal initial muscle state pro-

duces no artificial muscle-force transients at the beginning of a simulation. The equilibrium and damped

BIO-12-1561 30 Millard et al.



equilibrium musculotendon models are initialized by determining the muscle state that achieves equi-

librium between the muscle and tendon forces. The velocity of the musculotendon actuator is divided

between the muscle and tendon in proportion to the linearized compliance of each element.

The derivation of the equation used to estimate muscle velocity begins with a substitution of vari-

ables:

ℓS = ℓM cosα (17)

f S = fM cosα (18)

whereℓS andf S are the length and force of the muscle projected onto the direction of the tendon,

respectively. The equilibrium equation and the length of the musculotendon actuator are now expressed

in more compact forms:

f S
− f T = 0 (19)

ℓMT = ℓS + ℓT (20)

We now linearize Eqn. 19 with respect to the muscle length along the tendon, and substitute for tendon

length using Eqn. 20:

(

f S +
∂f S

∂ℓS
∆ℓS

)

−

(

f T +
∂f T

∂ℓT
(

∆ℓMT
−∆ℓS

)

)

= 0 (21)

Computing the time derivative of Eqn. 21, assuming that the partial derivatives are time-independent,

yields the following:
∂f S

∂ℓS
vS

−
∂f T

∂ℓT
(

vMT
− vS

)

= 0 (22)

Eqn. 22 can now be solved for the muscle velocity in the direction of the tendon:

vS∗ =

∂f T

∂ℓT

∂f S

∂ℓS
+

∂f T

∂ℓT

vMT (23)

Unfortunately, Eqn. 23 cannot always be employed due to the region of negative stiffness (a result

of the negative slope of the active-force–length curve in Fig. 3C), which can cause the denominator

of Eqn. 23 to become zero. If the denominator of Eqn. 23 is within floating-point tolerance of zero

(ǫ) or the tendon is slack, we assume that the muscle has zero velocity; otherwise,vS∗ is used as the
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lengthening velocity of the muscle along the tendon:

vS =















0 if

∣

∣

∣

∣

∂f S

∂ℓS
+

∂f T

∂ℓT

∣

∣

∣

∣

< ǫ or ℓ̃ T < 1.0

vS∗ otherwise

(24)

We compute the pennation angular velocity (α̇) and tendon velocity (vT) using the kinematic model of

the musculotendon actuator described in Sec. 2.4.

BIO-12-1561 32 Millard et al.




