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Abstract

Muscle-driven simulations of human and animal motion are widely used to complement physical ex-
periments for studying movement dynamics. Musculotendon models are an essential component of
muscle-driven simulations, yet neither the computational speed nor the biological accuracy of the sim-
ulated forces has been adequately evaluated. Here we compare the speed and accuracy of three muscu-
lotendon models: two with an elastic tendon (an equilibrium model and a damped equilibrium model)
and one with a rigid tendon. Our simulation benchmarks demonstrate that the equilibrium and damped
equilibrium models produce similar force profiles, but have different computational speeds. At low
activation, the damped equilibrium model is 29 times faster than the equilibrium model when using
an explicit integrator, and 3 times faster when using an implicit integrator; at high activation, the two
models have similar simulation speeds. In the special case of simulating a muscle with a short tendon,
the rigid-tendon model produces forces that match those generated by the elastic-tendon models, but
simulates 2-54 times faster when an explicit integrator is used, and 6-31 times faster when an implicit

integrator is used. The equilibrium, damped equilibrium, and rigid-tendon models reproduce forces
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generated by maximally-activated biological muscle witbam absolute errors less than 8.9%, 8.9%,
and 20.9% of the maximum isometric muscle force, respdgtivd/hen compared to forces gener-
ated by submaximally-activated biological muscle, thedégrproduced by the equilibrium, damped
equilibrium, and rigid-tendon models have mean absoluta®tess than 16.2%, 16.4%, and 18.5%,
respectively. To encourage further development of musention models, we provide implementa-
tions of each of these models in OpenSim version 3.1 and Inesrthdata at simtk.org, enabling others

to reproduce our results and test their models of muscudotedynamics.

1 Introduction

Researchers interested in understanding the physioldzgasés of human and animal movement have
performed an extensive range of experiments at many diffe@ales. Physiologists have studied iso-
lated muscle to characterize activation dynamics, foreeld@pment, and muscle—tendon contraction
dynamics. At the other end of the spectrum, biomechanists budied whole-body movement by
measuring and analyzing joint motions, ground reactiondsy and electromyographic signals from
thousands of subjects. Our understanding of human and bmiocvement would advance appreciably
if it were not so challenging to reconcile experimental nuieasients of isolated muscle with biome-
chanical measurements of whole-body motion. This chalemgsts, in part, because it is extremely
difficult to measure important neuromuscular quantitiesl(iding muscle forces, muscle fiber lengths,
and tendon strains) for the many muscles involved in theyrtion of movement.

Muscle-driven dynamic simulations of movement augmenéeexpental approaches to study move-
ment. Muscle-driven simulations include mathematical el®@f muscle activation and contraction
dynamics and allow calculation of muscle forces, fiber laegand other parameters that are not easily
measured. Over the past two decades, muscle-driven siongddiave been used in a wide variety of ap-
plications, including the analysis of human walking [1+&janing [7, 8], jumping [9], cycling [10, 11],
pathological gait [12—-16], functional electrical stimtidan [17], orthopaedic surgeries [18], and work-
place ergonomics [19].

Muscle-driven simulations rely on computational modelsmfsculotendon dynamics. There are
two broad classes of musculotendon models: cross-bridgeisn@0-22] and Hill-type models [23—
25]. Although cross-bridge models have the advantage ofjmgrived from the fundamental structure

of muscle [22], these models include many parameters teatifiicult to measure and are rarely used
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in muscle-driven simulations that include many muscles.fdes here on Hill-type models because
they are widely used in muscle-driven simulations [1-19].

Musculotendon models that are computationally fast anlbgically accurate are required to simu-
late human movement. While other branches of computatimeahanics have established benchmark
problems to compare the speed and accuracy of various m@dglsin multibody dynamics [26] and
contact mechanics [27, 28]), there are no analogous ben&hsimaulations for testing the speed and
accuracy of musculotendon models. The lack of benchmanlgmes and comparative data from ex-
periments has hindered the advancement of computatiomaldaihanics.

The purpose of this paper is to compare the computationaldsaed biological accuracy of three
musculotendon models. We first describe the equilibriumaunlegendon model that is commonly
used in muscle-driven simulations of movement. We thenvddio alternative models: a damped
equilibrium model and a rigid-tendon model. We compare thraputational speed of each musculo-
tendon model by simulating musculotendon dynamics oveofiegational range of the muscle using
constant-activation, sinusoidal-displacement tests eVé#duate the biological accuracy of the equilib-
rium, damped equilibrium, and rigid-tendon models by cormggthe simulated musculotendon forces
to those measured experimentally from isolated rat soR2isgnd cat soleus [30] muscles. Analysis of
these results allows us to make usage recommendations abteesthers to reproduce and extend our
work, we have implemented these models in OpenSim versigraB.open-source software system for
analyzing musculoskeletal dynamics [31-33]. We also gl@benchmark data at simtk.org so that the

computational speed and biological accuracy of other maosmdon models can be evaluated.

2 Musculotendon Models

Since biological muscle is complex, many simplifications arade when developing musculotendon
models. Musculotendon actuators are assumed to be masstdgmless, extensible strings that attach
to, and wrap around, bones and other structures. The fibenetepis simplified [23] by assuming
that all muscle fibers are straight, parallel, of equal lenghd coplanar (Fig. 1). Biological muscle
maintains a constant volume [34]; to mimic this propertg #rea and height of the fiber geometry
(shaded gray in Fig. 1) are also assumed to be constant. The the fiber makes with the tendon
(the pennation angle«) is varied so that the muscle maintains a constant heighbata reported

by Randhawa et al. [35] indicate that biological pennatedcstaubecomes thinner under load, which
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Figure 1. Simplified geometric representation of muscle fibers anddarior musculotendon model-
ing. Muscle fibers are assumed to be straight, parallel, @éildgngth, coplanar, and attached to tendon
at a pennation anglexf. As the muscle shortens, the distariceemains constant and the pennation

angle increases. Adapted from Zajac [23].

suggests that the height of a pennated muscle model shogyld The fixed-height approximation is
likely to introduce errors for muscles that bulge appregias they flex [36]. Nevertheless, the fixed-
height approximation is used here (described in Sec. 2.4).

In addition to these geometric simplifications, two assuomstare made to simplify the modeling
of force generation. First, the tensile force developed byacle is assumed to be a scaled version of
the force developed by a single representative fiber. Ttagraption allows us to represent musculo-
tendon actuators with a wide range of architectures (ebgr, fFengths, pennation angles, and maximum
isometric forces) with a single dimensionless model [23, Fecond, the force generated by a fiber
is assumed to be a function of only its activation, lengttd aelocity, each of which is assumed to
modulate force production independently. This assumgltmws one to first compute the activation
resulting from neural excitatiora€tivation dynamics and then use this result to compute the muscle

force (contraction dynamigs as illustrated in Fig. 2.
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Figure 2. Muscle-driven simulations use a model of musculotendortraotion dynamics to deter-
mine muscle lengthg’{), velocities (™), and forces f™) from neural excitationsu), generalized
coordinates(), and generalized speeds.(A model of activation dynamics determines muscle activa-
tions (@) from neural excitationsi). A musculoskeletal model determines musculotendon kengihd
velocities (MT andv™T) from the generalized coordinates and speadmflg). The model of mus-
culotendon contraction dynamics uses the results of theagioin dynamics and the musculoskeletal

model to produce a forward simulation of muscle length)( velocity @), and force ™).

2.1 Activation Dynamics

Our models use a simplified first-order activation dynamidei§38, 39], though more detailed models

of activation dynamics exist [40]. We compute activatioinom neural excitation:

a — Amin

~ _ 0~ Qmin 1
¢ 1 — Qmin ( )
g = 2~ ¢ )
T
A (0.5+ 1.5a) if u>a
T = (3)
__™ otherwise
0.5+ 1.5a

wherer, andr, are, respectively, the activation and deactivation tinrestants, which are set 10 ms
and40 ms by default [39]. We have modified the conventional activatitate equation [23] so that
activation smoothly approaches an adjustable nonzera loaend ¢..;,), Which is necessary to avoid

a numerical singularity in the equilibrium musculotendondal (see below).

2.2 Equilibrium Musculotendon M odel

Musculotendon actuators consist of an active contradel@ment, a passive elastic element, and an elas-

tic tendon (Fig. 3A). Active tension develops when the nas/gystem excites muscle. The maximum
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active force a muscle can develop varies nonlinearly wighahgth, represented by tlaetive-force—
lengthcurvef™(¢ M) (Fig. 3C), peaking at a force gf™ at a length of’M (the tilde is used to denote
forces, velocities, muscle lengths, and tendon lengthsatieanormalized by M, vM | ¢M and/T, re-
spectively). During non-isometric contractions, the éodeveloped by muscle varies nonlinearly with
its rate of lengthening, which is represented byfthree—velocitycurvefV (o™) (Fig. 3D). Force is also
developed when the muscle is stretched beyond a threshaithleregardless of whether the muscle

is activated, which is represented by thessive-force—lengtburvef* (¢ M) (Fig. 3C). Muscle force

(fM) is computed using these curves as follows:
P = 2 (a £ £ ) + ) (4)

wherea is the muscle activation, which ranges fram, to 1.

Muscle attaches to bone through tendon. Since a long ten@grstretch appreciably beyond its
slack length () when under tension, tendon is modeled as a nonlinear @lelgtinent developing
force according to theendon-force—lengtburvef ™ (¢ T) (Fig. 3B). Muscle fibers attach to tendon at a
pennation anglex(), scaling the force they transmit to the tendon. If the tendassumed to be elastic
and the mass of the muscle is assumed to be negligible, teemukcle and tendon forces must be in

equilibrium (i.e.,fMcosa — fT = 0):
1 (af (@) Y (@) + £7P(EM)) cosa— fET(ET) = 0 (5)

Muscle and tendon force development curves (boldface isE¢jand 5) are expressed as functions of
dimensionless lengtlf {* and/ ™), velocity (@), and force (normalized by™) so they can be scaled
to model a variety of human and animal muscles [23, 37]. Wes lthlaveloped default force curves
for the musculotendon model that have been fit to experirheiata [41-46]. These curves can be
adjusted to model muscle and tendon whose characteristigatd from these default patterns. For
example, the tendon strain developed at one normalize@ fwao be adjusted by changing a single
parameter, which proportionally scales the entire tenidoce—length curve along the horizontal axis
(Fig. 3B). We used quintic Bézier splines [47] to represtt force development curves for three
reasons: Bézier splines afg-continuous (i.e., continuous to the second derivativéjctvis required

if a derivative-based algorithm (e.g., Newton’s method) e operating on the musculotendon models;
Bézier splines respect the bounds defined by their contiokg; and Bézier splines are expressive yet

straightforward to modify.
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Figure 3. Schematic of equilibrium musculotendon model (A), tendlarce—length curve (B), active-
and passive-force—length curves (C), and force—velocityec (D). Experimental data for the tendon-
force—length curve in panel B are illustrated as 95% contidentervals [41,42]. Data points in panels
C and D denote experimental data for the force—length [43add force—velocity [45,46] curves. The
default curves used in the musculotendon models are shoeomiparison to these experimental data.

Note thatf™ and f T represent, respectively, muscle force and tendon foramaiizred byfM.
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In a forward-dynamic simulation, the force generated by aculotendon actuator must be calcu-
lated given the length/{!), velocity (®™), and activation) of the muscle. Equation 5 alone cannot
be used to solve for the muscle force because multiple caatibims of muscle length and velocity will
satisfy the equation. A unique solution can be found by sgi\Eqn. 5 for the normalized muscle ve-
locity (™) to obtain an ordinary differential equation, which canrthe integrated to simulate muscle

contraction [23]:

{}M:f\/

inv

(fT(ET)/cosa - fPE(EM)) ®

afL(gM)

wheref, is the inverse of the force—velocity curve. Although Eqns Blévoid of numerical singulari-

ties, Eqn. 6 has four: as — 90°, asa — 0, asf*({™) — 0, and asf ¥ (5™)/0o™M — 0. Since these
conditions are often encountered during a simulation, tlentjties causing singularities in Egn. 6 are
altered so that the singularities are approached but neaehed:ac < 90°, a > 0, fX(/M) > 0,
andofV (oM)/0oM > 0. Although these modifications avoid numerical singulastiEqn. 6 becomes
numerically stiff when these singularities are approachduch slows the process of numerical in-
tegration. The effect of these near-singularities on satioh time is so onerous that lower bounds
of a > 0.01 [39] andf™(¢M) > 0.1 [39, 48] have been used, which deviate substantially froair th
physiological values ad.

Without modifying the formulation of the equilibrium mod&he muscle is able to reach unrealisti-
cally short lengths [39] and cannot be simulated when fullgativated. We use a unilateral constraint

on muscle length to prevent the muscle from becoming urstezdily short:

0 if /M< /M andoM* <0

oM+ otherwise

whereo™* is a candidate value far™ computed using Egn. 6. We define the minimum permissible
muscle length as the greater of the minimum active muschgthefdefined by the active-force—length
curve) and the length of the muscle when it is pennate84m36° (arccos(0.1)). We use a maximum
pennation angle df4.26° because higher pennation angles increase simulation tithewtimproving
accuracy. The muscle length and pennation angle congraiatimportant because they ensure that
the muscle length has a realistic lower bound, and that Egioe8 not become numerically stiff as a

pennation angle df0° is approached.
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2.3 Damped Equilibrium Musculotendon Mode

The singularities in Eqn. 6 arise because Eqn. 5 is formdilestesuch a way that prevents the muscle
from satisfying the equilibrium equation when it is deaated (i.e.a2 = 0) or when a nonzero tendon
force is applied to a maximally-pennated muscle (ifé.,> 0 anda = 90°). We address these two
problems by limiting the maximum pennation angle and iniidg a damper in parallel with the
contractile element, which results in the damped equiiormusculotendon model. Though strong
damping forces have not been observed duimgivo human experiments [49], it is reasonable to
assume that muscle is lightly damped, given its high wataterd 0f82.3% [50]. The addition of the

damper (with damping coefficied) results in the following damped equilibrium equation:
FM <afL(£ MYV (M) 4 £PE(FM) 4 mM) cosa — FMET(ITY = 0 (8)

Since muscle length™ is a state, Eqn. 8 can be readily and uniquely solved fbusing a derivative-
based root-finding algorithm such as Newton’s method, piexviall the force development curves
(FL(M), £V (M), £FPE(IM), andfT (¢ T)) areC,-continuous. The damped equilibrium musculotendon
model of Eqn. 8 should generate force profiles that are sirtoléhose generated by the equilibrium
model described by Eqgn. 5, but in a fraction of the simulatiore because the damped equilibrium
model is free of numerical singularities. We set the defdalhping coefficient to a valuei (= 0.1)
that reduces simulation time without generating large dagforces (damping forces afel fM at

vM ). Note that we use a constraint (as in Eqn. 7) to enforce arlbwend on the fiber length and to

max

prevent Eqn. 8 from becoming numerically stiff as a penmagingle 0f90° is approached.

2.4 Rigid-Tendon Musculotendon Model

Some tendons are so stiff that they can be treated as inéxgnsffectively replacing the tendon
spring in Fig. 3A with an inextensible cable. The tendon teasibility assumption is appropriate
only when the tendon does not stretch sufficiently to affeetormalized length of the contractile
element; the validity of this assumption will be exploreéhgsa benchmark simulation in Sec. 3. This
modeling simplification makes it possible to determine thesate length (M) and velocity () from
the musculotendon lengtli™) and velocity ¢™T) using a kinematic model of the musculotendon
actuator (Fig. 3A):

M =0T M eosa (9)
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Differentiating Eqn. 9 with respect to time yields a relatizetween the muscle, tendon, and musculo-
tendon actuator velocities:

oMT =T oM cosa — Masina (20)

wherev™ = 0 if the tendon is rigid. The length of the muscl) and its orientationd) are coupled

by the fixed-height-parallelogram pennation model (Fig. 1)
Msina =h (11)

The constant height of the parallelograim s computed using the optimal muscle length and pennation
angle:
h = (Msin o, (12)

Differentiating Eqn. 11 with respect to time yields an exgsien that can be used to calculate the

pennation angular velocity:
i vMsin o
o =

(13)

/M cos av

Since the tendon length and velocity are known (£.é.= (I andv™ = 0), we use Eqgns. 9 and 11
to solve for muscle length/{!) given musculotendon lengtti’{*), and Egns. 10 and 13 to solve for
muscle velocity ¢™) given musculotendon velocity {'T). As with the elastic-tendon models, we use
the unilateral constraint of Eqn. 7 to enforce a lower bouihé'f) on muscle length. We compute the

force generated by the muscle directly:
P = P (afH @ £V EM) + ) + B cosa (14)

Light damping ¢ = 0.1 by default) is included in this rigid-tendon muscle modehc® a muscle can
generate only tensile force, we constrain Eqn. 14 to remasitige:
fM* if fM* >0

M= (15)
0 otherwise

3 Computational and Biological Benchmarks

We performed four benchmarks to measure the speed and egafr@ach musculotendon model.
Each musculotendon model implementation was confirmedrsarve energy during simulation. All

benchmark simulations were performed on a 2.20-GHz, 6#piop with 8.00 Gb of memory.
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Figure 4. Schematic of the musculotendon actuator used in the el@stdon and rigid-tendon com-

putational benchmarks. In the simulations, the initiagnof the musculotendon actuator was set to

c1 = LT + ¢M cos o, and then the length was varied bysin 27t.

Elastic-Tendon Computational Benchmark

In the first benchmark simulation, we determined the difiees in computational speed and force re-
sponse between the equilibrium model and the damped equitibnodel over a range of activation
values. The musculotendon actuator consisted of a shomgped muscle/f! = 2 cm anda, = 30°)
and a long tendor’{ = 20 cm) (Fig. 4). Eleven constant-activation, sinusoidal-ciggiment simula-
tions were performed using each elastic-tendon muscudotemodel, with activations varying frotm
(0.01 for the equilibrium model) td in increments of).1. The muscle and tendon force curves shown
in Fig. 3 were used for each model; the initial length of thesoulotendon actuator wég + ¢ cos oy,
(Fig. 4). Each muscle was initialized using the routine dbsd in App. A, then lengthened and
shortened by applying a sinusoidal displacement to thedrekof the tendon. A period df s and

an amplitude o} (i.e., (MT(t) = (¢ + £} cosa,) + €)' sin 27t) resulted in a fiber length change

of approximately+0.5¢) and fiber velocities of approximately0.550 to 0.750, . Numerical

simulations were performed using explicit (Runge—Kutta+sbn [51]) and implicit (CPODES [52])
integrators. Integrator tolerances were chosen for eantbir@tion of model and integrator to pro-
duce force profiles with mean absolute errors less than 0f1f4!dat all activations) when compared
to highly accurate1(0~!2 tolerance) simulation results obtained using the exgiitéégrator. The dif-
ferences between the normalized force profiles generateldebgquilibrium and damped equilibrium
musculotendon models were recorded. We calculated thdinealfraction as the quotient of wall
clock time and the amount of time simulated; a real-timetioacless thar indicates that the simula-
tion completed faster than real time.

The damped equilibrium model produced force profiles thaewsthin 2% of those produced by

the equilibrium model (Fig. 5); however, the damped eqtiilim model generally simulated faster at
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Figure 5. Normalized tendon force profiles of the equilibrium (leffjdadamped equilibrium (right)
musculotendon models. Each muscle underwent constaméidan, sinusoidal-displacement simula-
tions of 1-second duration with activations varying fromQ00( for the equilibrium model) to 1 in
increments of 0.1. The average absolute difference betwesanalized force profiles generated by the

models was less than 0.3% at low activation and less than at%figh activation.

all activation levels and with either integrator (Fig. 6heldamped equilibrium model was 1-29 times
faster than the equilibrium model when using the explidiégnator and 1-3 times faster when using
the implicit integrator. The damped equilibrium model adsthibited simulation times with the lowest
mean and standard deviation, completin@2t+ 10 ms and73 4+ 12 ms when using the explicit and
implicit integrators, respectively. In contrast, the diguium model required15 + 539 ms (explicit)
and89 4+ 27 ms (implicit) to simulate. Thus, a system using the damped Idxgiwim musculotendon
model can be expected to simulate in a consistent amounmefdcross a wide variety of operating

conditions.

Rigid-Tendon Computational Benchmark

Simulations of muscle with a rigid tendon were used to deigenthe differences in computational
speed and force response between the damped equilibriumgatdendon models over a range of
tendon-to-fiber length ratios. The musculotendon actuatmdeled in this benchmark was similar to

that shown in Fig. 4, but consisted of a short, non-pennatestcha (M = 2 cm anda, = 0°). Ten
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Figure 6. Time required to generate the simulation results shown gn Fiusing explicit (left) and
implicit (right) integrators. Wall clock time was divided bhe amount of time simulated to obtain the

real-time fraction; values belowindicate that the simulations completed faster than re@ ti

maximal-activation, sinusoidal-displacement simulasiavere performed using each musculotendon
model, with tendon slack lengths varying from only a smaltfion of the optimal fiber lengtif =

10 - 279¢M ~ 0.0195¢M) to substantially longer than the optimal fiber length & 10¢M), with the
tendon slack length doubling from one simulation to the neXtsinusoidal displacement of period

1 s and amplitude).5¢M was used, which resulted in a fiber length change of apprarima:0.5¢M.
Numerical simulations were performed using the same iategs and accuracies used in the elastic-
tendon computational benchmark, and the same metrics werputed.

The rigid-tendon model generated force profiles that matthese generated by the damped equi-
librium model to within0.05fM (on average) wheA® < ¢M (Fig. 7), and did so with greater com-
putational speed (Fig. 8). As the tendon length increasgdriakethe optimal fiber length, however,
the force profiles produced by the rigid- and elastic-tendonels diverged rapidly. In addition, Fig. 8
shows that the computational speed was largely dependeneéahoice of integrator. The rigid-tendon
model was 2-54 times faster than the elastic-tendon modehwhking the explicit integrator, and 6-31

times faster when using the implicit integrator.
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Figure7. Differences in force profiles generated by rigid-tendondawhped equilibrium musculoten-
don models as a function of tendon slack lendth) (hormalized by the optimal fiber length’f). The
force profiles were obtained using maximal-activationysoidal-displacement simulations. The mean
(solid curve) and standard deviation (shaded area) of thelaie difference in force profiles over the
duration of each simulation show that errors in the rigideien model increase rapidly as normalized

tendon slack length increases.
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Figure 8. Computational speed of the damped equilibrium (black cueme rigid-tendon (gray curve)
musculotendon models as functions of tendon slack lerfdthrormalized by the optimal fiber length
(¢M) using explicit (left) and implicit (right) integrators. &\ clock time was divided by the amount of
time simulated to obtain the real-time fraction; valuehel indicate that the simulations completed

faster than real time.

Maximal-Activation Biological Benchmark

We compared the force profiles generated by the equilibrdamped equilibrium, and rigid-tendon
models to those produced by maximally-activated rat soteussclein vivo, using the experimental data
of Krylow and Sandercock [29]. This data set consisted oégperimental trials, each beginning with
the muscle deactivated aBdnm shorter than its optimal length. The muscle was then maxynaat
tivated and stretched, displacing the muscle through aertétvag is consistent with ambulation (Fig. 9).
The six trials were identical except for the amplitude of theplacement; the maximum amplitudes
were(.05, 0.1, 0.25, 0.5, 1.0, and2.0 mm. While the optimal fiber length/f! = 17.1 mm) and max-
imum isometric force (M = 1.17 N) were reported by Krylow and Sandercock [29], several other
parameters required by the musculotendon model were noaséiamed a pennation anglecxgf= 6°
and a tendon slack length 6f = ¢M based on measurements of rat soleus muscle architectlré®3
muscle and tendon force curves shown in Fig. 3 were used. @aiblelder—Mead [54] optimization
algorithm to tune the maximum isometric forcg) and identify the maximum contraction velocity

(M ) and activation time constanty) for each musculotendon model; the damping coefficigit (

max
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Figure 9. Waveform of the change in musculotendon length [29] usetiemtaximal-activation bio-
logical benchmark, shown here with a maximum length chafigedanm. This waveform was scaled
by the appropriate maximum length change, addéed to/M cos a,, —2 mm, and then used to prescribe

the displacement of the free end of the tendon.

was also identified for the damped equilibrium and rigiddimm models. The force profile generated
by each musculotendon model was fit to the experimentaldfiamplitude2.0 mm by minimizing the

mean absolute error over the duration of the simulationpasiBed by the objective functiosh:

1 N
J = N Z ‘ ily\ﬁwdel - fil,\gxperiment (16)
=1

whereN = 2001 is the number of data points, which were sampled at 1-mddse intervals. We used
the remaining five trials in this data set (correspondingnplgudes betweef.05 mm and1.0 mm)
to evaluate the performance of each musculotendon modw] tise optimized parameters.

The damped equilibrium model produced forces that werelaino those produced by biological
(rat soleus) muscle that was maximally activated. The fqnadile corresponding to a maximum
amplitude of2.0 mm (Fig. 10, bottom) was used to adjust the maximum isometnicef@l.27 N)
and identify the maximum contraction velocity.%0 ¢} /s), activation time constan?.8 ms), and
damping coefficient(.016). The mean absolute error between the simulated and expetahforce
profiles corresponding to an amplitude2o mm was 8.9% (expressed as a percentagé*bmeasured
experimentally), which is comparable to that obtained byl#iw and Sandercock (6.1%) [29]. The
identified parameters resulted in simulations that contpeorably with experimental data collected
using different amplitudes as well (Fig. 10). The mean aldsoérrors for the remaining trials were
between 3.3% and 6.7%; Krylow and Sandercock [29] reportetesponding errors between 3.9%
and 8.6%. The equilibrium model had similar optimal pararef(fM = 1.28 N, v} = 5.32 ¢M/s,
andr, = 24.0 ms) and similar errors (8.9% for the trial of amplitudé) mm, and between 3.0% and

6.7% for the other trials). Using the rigid-tendon model, egained substantially different optimal
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parameters f* = 1.20 N, v

max

= 9.86 (M/s, 7o = 37.8 ms, and3 = 0.024) and larger errors

(between 4.5% and 20.9%). Note that the mean absolute eéstamned using the rigid-tendon model
was approximately the sum of the equilibrium model error Hredadditional error introduced by the
rigid-tendon assumption (Fig. 7). The agreement betweesiowlation results and the experimental
data could be improved by fitting our model curves to the e@rpemtal data, as was done by Krylow

and Sandercock [29].

Submaximal-Activation Biological Benchmark

We compared the force profiles generated by the equilibrdamped equilibrium, and rigid-tendon
models with forces measured from submaximally-activatgdsoleus muscla vivo [30]. In the first

six experimental trials, the musculotendon actuator wad &ea length of’T + /M cos a, — 4 mm
and excited using constant-frequency stimulation rates)p?0, and30 Hz, and random stimulation
signals with mean frequencies of, 20, and30 Hz, as described by Perreault et al. [30]. These
six trials were then repeated while applying length changiés maximum amplitudes ot.0 mm
and 8.0 mm (4:0.033¢) and +£0.267¢M

o !

respectively) to the free end of the tendon (Fig. 11). The
forces measured during the experimental isometric triasewiltered with a low-pass Butterworth
filter of cut-off frequency120 Hz and used to calculate the activation signals that must béeapp
to each musculotendon model to elicit the same responseh&eused these activation signals in
the 12 non-isometric simulations. Since it was not repolgdPerreault et al. [30], we assumed a
maximum isometric force of M = 25.1 N, which resulted in a maximum activation signallof over

the entire data set. We obtained estimates for the optimel lémgth (M = 30 mm), pennation angle
(e, = 7.5°), and tendon slack lengtif{ = 65 mm) from the measurements reported by Scott et
al. [55]; the muscle and tendon force curves shown in Fig. 2wsed.

The damped equilibrium model was capable of producing aorespthat approximates the response
of biological (cat soleus) muscle when submaximally atéidathough the results were less accurate
than those obtained in the maximal-activation biologi@i¢dhmark. The mean absolute errors between
the damped equilibrium model and experimental force piitaresponding to amplitudes bf) mm
(left column in Figs. 12 and 13) artl0 mm (right column) were less than 3.2% and 16.2%, respec-
tively (expressed as a percentagefdf). Perreault et al. [30] reported corresponding maximummmea

absolute errors of 3.5% and 17.7% using their rigid-tendditype model. The corresponding errors
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Krylow and Sandercock (1997)
Damped Equilibrium Model

+0.05 mm (£0.003 1)

+0.10mm (£0.006 £)1)

+0.25mm (£0.015¢M)

+0.50mm (£0.029 £M)

Normalized Force

+1.00mm (£0.058¢)1)

£2.00mm (£0.117£M)

0 05 : 15 2

Time (s)
Figure 10. Comparison of experimental [29] (gray curve) and simuldtg#dck curve) force profiles
from maximally-activated muscle undergoing length changiemaximum amplitud®.05 (top), 0.1,
0.25,0.5, 1.0, and2.0 mm (bottom). The maximum isometric force used in the model jijas= 1.27 N

and the optimal fiber length wd$' = 17.1 mm.
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Figure 11. Waveform of the change in musculotendon length [30] usetémnstibmaximal-activation
biological benchmark, shown here with a maximum length geaof 1.0 mm. This waveform was
scaled by the appropriate maximum length change (eithenm or 8.0 mm), added ta&/X +¢M cos a,,—

4 mm, and then used to prescribe the displacement of the freefehd tendon.

obtained using the equilibrium model were 3.3% and 16.4%chvare very similar to those obtained

using the damped equilibrium model. The rigid-tendon madetiuced errors of 5.5% and 18.5%.

4 Discussion

The development of muscle-driven simulations requiresaulasendon models that are fast and accu-
rate. This paper evaluates the computational speed ampial accuracy of musculotendon models
and establishes benchmarks to accelerate future reséaochhumerical results and the data required
to replicate our benchmarks are available at simtk.org.

We developed and tested three musculotendon models: tiigoegm model, the damped equilib-
rium model, and the rigid-tendon model. The damped equulibmodel produced forces that compare
favorably with those observed in maximally-activated b@gtal muscle, and simulated faster than
the equilibrium model regardless of whether an explicitraplicit integrator was used. The rigid-
tendon model was fast and accurate when simulating a mayiaetivated muscle with a short tendon
(X < ¢M). Since neither the damped equilibrium model nor the rigisdon model contains numer-
ical singularities, it is possible to simulate deactivatedscle, use an active-force—length curve that
reaches zero, and use a force—velocity curve that inclucdspa of zero. We developed and tested
another musculotendon model, named the acceleration ntbdéincludes a small mass between the
tendon and muscle. Despite improving a previous formutatbthis model [56], the acceleration
model was slower than the models presented above, so itissrasel not reported here. The source
code for the acceleration musculotendon model is availaidentk.org.

The fastest simulations of an elastic-tendon model werainéd by pairing the damped equilibrium
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+1.0mm (£0.033 M)

20

Perreault et al. (2003)
Damped Equilibrium Model

+8.0mm (£0.267 (M)

10Hz
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Time (s)
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Figure 12. Comparison of experimental [30] (gray curve) and simuldt#dck curve) force profiles

from submaximally-activated muscle undergoing lengtmges of maximum amplitude0 mm (left)

and8.0 mm (right). Constant-frequency stimulation rates16f (top), 20, and30 Hz (bottom) were

applied to the biological muscle. Force profiles measurgeementally during isometric trials were

used to determine the corresponding activation signatsiiat be applied to the damped equilibrium

musculotendon model. The maximum isometric force usedémtbdel wasfM = 25.1 N and the

optimal fiber length wagM = 30 mm.
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Perreault et al. (2003)
Damped Equilibrium Model

+1.0mm (£0.033¢M) +8.0mm (£0.267¢))

20

20Hz
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N
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Figure 13. Comparison of experimental [30] (gray curve) and simuldt#dck curve) force profiles
from submaximally-activated muscle undergoing lengtmges of maximum amplitude0 mm (left)
and&8.0 mm (right). Random stimulation signals were applied to thddgaal muscle, with mean
frequencies ofl0 (top), 20, and30 Hz (bottom), as described by Perreault et al. [30]. Force m®fil
measured experimentally during isometric trials were usedketermine the corresponding activation
signals that must be applied to the damped equilibrium matmdon model. The maximum isometric

force used in the model wgg! = 25.1 N and the optimal fiber length wadg' = 30 mm.
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model with the implicit integrator, though the explicit @grator was only marginally slower for these
single-muscle simulations. The performance advantageiofyian implicit integrator to simulate an
equilibrium model is apparent from Fig. 6, and has been tegogoreviously [48]. Note, however,
that the number of function evaluations performed by an ioitpintegrator increases with system
size [57], while the number of function evaluations reqdilby an explicit integrator is independent
of system size. Therefore, it is likely that an explicit igtator will outperform an implicit integrator
when simulating a large number of muscles with the dampedilegum model.

An important feature of our musculotendon models is that @ be scaled to represent muscles
with different architectures based on experimental measants of optimal muscle fiber lengths, pen-
nation angles, and physiological cross-sectional arée3872. We used this feature to scale the damped
equilibrium musculotendon model to represent rat solewiscan soleus muscles, and provided com-
parisons between simulated forces and forces measuredreepéally. Since the force produced by a
muscle depends on the muscle architecture, it is imponbesdrnpare simulation results to experimen-
tal results obtained from muscles with different architees. Our recommendation is to expand the
repository of biological benchmarks that can be used talestidelity of musculotendon simulations.

Another feature of our musculotendon models is that theyrapdemented in OpenSim [31-33],
an open-source software system for analyzing musculaskelgnamics. This feature allowed us to
further test our models by simulating walking dynamics gsinwhole-body musculoskeletal model
that includes over fifty muscles [3, 18, 58, 59], which is fyedistributed with OpenSim. We repeated
the simulation using each of the three musculotendon mal@sisribed here. We found that the time to
simulate muscle-driven walking was dominated by the spéégdeomusculotendon model. A muscle-
driven simulation of walking using the rigid-tendon modeds®.5 times faster than that using the
equilibrium model. An analogous simulation using the dadgguilibrium model (which includes an
elastic tendon) was.7 times faster than a simulation using the equilibrium model.

The musculotendon models described here have importatatioms. First, all of the models ex-
hibit a region of negative stiffness on the descending lifnihe active-force—length curve. This region
of negative stiffness can cause a musculotendon lengtbitisy during forward-dynamic simulations.
Second, although the damped equilibrium model was ableplacage the force profiles generated by
biological muscle at maximal activation (Fig. 10), the camgons between the model and experimen-

tal force profiles at submaximal activation revealed lageors (Figs. 12 and 13). Third, the forces
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predicted by these models are dependent only on activdéngth, and velocity, whereas the forces
generated by biological muscle depend on past states [6G}thaer variables, such as temperature [61]
and fatigue [62]. Fourth, the musculotendon models asshateaitl! fibers within a musculotendon ac-
tuator are described by the same force—velocity curve,igidical muscles are comprised of different
fiber types that have different contractile speeds. Fipally musculotendon actuators assume that the
muscle fibers are straight, planar, parallel elements o&ldgugth constrained to an area of constant
height (Fig. 1). This assumption may limit the accuracy withich muscle forces can be simulated,
especially for muscles that have variable fiber lengths anaotex geometry.

We encourage researchers to develop musculotendon mbdelksliminate the limitations of our
models and provide biological benchmark data that can be ase standard for comparison. Mus-
culotendon models published with software that implem#érganodels will have the greatest impact.
Providing software will enable others to reproduce andrektgublished results, and use the novel
musculotendon models in muscle-driven simulations to gaight into the dynamics of human and

animal movement.
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Nomenclature

Symbol Definition

(MT length of the musculotendon actuator

(M {ZM} muscle lengthm]

M length at which the muscle develops peak isometric actikeefon]

[¢]

Gmin
TA
™

t

minimum permissible muscle lengfi]

tendon lengthm]

length at which the tendon begins to develop a tensile fon¢e
lengthening velocity of the musculotendon actugiofs|
muscle lengthening velocityn /s]

maximum muscle contraction velocify /s

tendon lengthening velocityn /s|

muscle forcgN]

peak isometric muscle ford&l]

tendon forcgN]

normalized active-force—length curve of the musiele’ f.M]
normalized passive-force—length curve of the mushigf. |
normalized force—length curve of the tendo¥y/ fM]
normalized force—velocity curve of the mus¢re/ /]
muscle pennation anglead]

muscle pennation angle whél = ¢M [rad]

pennated muscle height]

muscle excitatioti—|

muscle activatior—]

minimum permissible muscle activation]

activation time constari|

deactivation time constafy

time [s]

The braced symbols represent dimensionless quantitiesemsionless forces, velocities, mus-

cle lengths, and tendon lengths have been normalizeffhy M , ¢M, and?!, respectively.
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A Musculotendon Model I nitialization

Model initialization describes the process of determirifreglength and velocity of the muscle, given its
activation and the length and velocity of the musculoteraftinator. The ideal initial muscle state pro-

duces no artificial muscle-force transients at the begmaofra simulation. The equilibrium and damped
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equilibrium musculotendon models are initialized by det@ing the muscle state that achieves equi-
librium between the muscle and tendon forces. The veloditih@musculotendon actuator is divided
between the muscle and tendon in proportion to the lineduebenpliance of each element.

The derivation of the equation used to estimate muscle itglbegins with a substitution of vari-

ables:

5 = Mcosa a7
5 = fMceosa (18)

where/® and f° are the length and force of the muscle projected onto thetibre of the tendon,
respectively. The equilibrium equation and the length efrtftusculotendon actuator are now expressed

in more compact forms:

fr-ft =0 (19)
= St (20)

We now linearize Eqn. 19 with respect to the muscle lengthgtbe tendon, and substitute for tendon
length using Egn. 20:
0 f S oft
S T MT S _
(f agS ) (f 50T (ACMT — A¢ ))_0 (22)
Computing the time derivative of Eqn. 21, assuming that tuigd derivatives are time-independent,

yields the following:

of> of7T
oY~ g (M —0%) =0 (22)
Eqgn. 22 can now be solved for the muscle velocity in the diveadf the tendon:
or”
* ovr
st @
ors oLt

Unfortunately, Egn. 23 cannot always be employed due to égeon of negative stiffness (a result
of the negative slope of the active-force—length curve o BIC), which can cause the denominator
of Egn. 23 to become zero. If the denominator of Egn. 23 isiwitloating-point tolerance of zero

(¢) or the tendon is slack, we assume that the muscle has zevdityelotherwisep>* is used as the
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lengthening velocity of the muscle along the tendon:

. |ofS  OfT -
0 if ‘W+W <eorft <10

vS*  otherwise

(24)

v =

We compute the pennation angular velocity and tendon velocity(*) using the kinematic model of

the musculotendon actuator described in Sec. 2.4.
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