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Abstract: Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical
joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement
unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young
adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes.
Trunk, pelvis, and lower-limb joint kinematics were estimated by IMU- and optoelectronic-based
models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD),
local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of
each angle over 200 continuous strides, and evaluated model accuracy (RMSD: root mean square
difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to
within-participant gait responses (effects of speed and swing). RMSDs of joint angles were 1.7–7.5◦

(pooled mean of 4.8◦), excluding ankle inversion. ICCs were mostly good to excellent in the primary
plane of motion for ROM and in all planes for meanSD and λmax, but were poor to moderate for
DFAα and SaEn. Modelled speed and swing responses for ROM, meanSD, and λmax were similar.
Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of
joint angle time series, ROM in the primary plane of motion, magnitude of variability, and local
dynamic stability.

Keywords: gait; inertial measurement unit; joint kinematics; local dynamic stability; OpenSim;
persistence; regularity; stride-to-stride variability

1. Introduction

Possessing too much or too little motor variability, the natural variability in sen-
sorimotor actions [1], is well linked to walking-related fall risk. These actions include
whole-body and joint motions that vary over time from stride to stride. Elderly fallers
exhibit greater stride-to-stride variability in spatiotemporal outputs (e.g., stride time) com-
pared to non-fallers [2,3]. This difference may emerge from altered stride-to-stride joint
angle patterns that have been observed with older age, including lower local dynamic
stability (measured by the local divergence exponent) [4], lower regularity (measured by
the sample entropy) [5], and a shift in the magnitude of variability in ankle motion from
the sagittal to the frontal plane (measured by the standard deviation) [6]. For example,
calculation of phase-dependent entropy of trunk motion during walking was recently
shown to improve prediction of future single-time fallers in community-dwelling older
adults [7]. Monitoring the variability of joint angles in aging adults at a larger scale could
help better understand the salient elements of stride-to-stride control that predict falls,
which could better individualize fall-prevention interventions. However, measurements of
joint angles (and variability from stride to stride) typically rely on optoelectronic motion
capture systems that are expensive, require training and expertise to operate, and involve
intensive data acquisition and processing procedures. Optoelectronic motion capture of
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gait is also restricted to treadmills [4,5] or short distances overground [6], which may
not fully replicate the stride-to-stride variability that occurs over longer distances and
durations overground. Using this motion capture approach, large-scale evaluations of
motor variability in realistic and clinically-relevant gait scenarios are infeasible.

Wearable inertial measurement units (IMUs) offer an alternative technology for es-
timating joint angles that can address these limitations of optoelectronic motion capture.
IMUs have been used to estimate joint kinematics since 1990 [8], with recent work showing
that IMU-based kinematic models of lower-limb activities achieve absolute differences
(i.e., accuracies) ranging from 1 to 10◦ relative to optoelectronic-based models [9–15] and
good–excellent consistencies in the sagittal plane time series [9,12,16,17]. Some IMU-based
kinematic models are built based on machine learning approaches [13], but most others
typically involve (i) estimating the IMU orientation by fusing accelerometer and gyroscope
data, (ii) estimating the anatomical segment orientation by applying a sensor-to-segment
calibration (e.g., [18]), and (iii) calculating joint angles as the relative orientation between
reference frames fixed to adjacent body segments (see [19] for review). A particular obstacle
to the longer-duration recordings necessary to measure stride-to-stride kinematics is pre-
venting IMU sensor orientation drift attributed to sensor fusion. Strap-down integration
of an IMU on a non-stabilized segment amplifies random noise in linear accelerations
and angular velocities, leading to drift in the estimated orientations. Many sensor fusion
algorithms address horizontal drift by incorporating data on the Earth’s magnetic field
detected by the magnetometer [20–24]; however, detection of the magnetic field is disturbed
locally by ferromagnetic materials [25]. Beyond the magnetometer, drift corrections are
possible over short durations by adding zero-velocity updates [26] or over short distances
by adding localization using technologies like ultrawideband [11], but these approaches
do not provide a solution for long durations and distances.

Anatomical joint constraints in the underlying kinematic model can help to miti-
gate drift over long durations and distances. Using the OpenSense toolkit to compute
inverse kinematics of a biomechanical model with IMU inputs, Al Borno et al. [15] re-
cently demonstrated root mean squared differences (RMSD) of 3–6◦ for IMU-based hip
flexion, hip abduction, knee flexion, and ankle dorsiflexion angles relative to optoelec-
tronic motion capture, with near-zero drift (from 0.14 to 0.17◦/min) over ten minutes of
walking. This supports the earlier findings of Kok et al. [27] and provides a new open-
source option for constructing an IMU-based kinematic model. This inverse kinematics
approach to solving joint angles has the added benefit of mitigating experimental (i.e.,
non-biological) noise [28], which could particularly benefit evaluations of motor variability.
Although constrained optimization problems like inverse kinematics can require high
computation time to solve, recent work from Slade et al. [14] demonstrated that a real-time
IMU-based solution is possible. They reported RMSD in joint angles of approximately 5◦,
a difference accepted as reasonable for many clinical applications [29]. The OpenSense
extension of OpenSim [30,31] provides the first open-source platform for IMU-based biome-
chanical modelling and a free alternative to cost-prohibitive and closed-source commercial
models [20]. Because Al Borno et al. [15] used the magnetometer to calculate drift-free
kinematics and Slade et al. [14] reported kinematic drifts in their magnetometer-free solu-
tion, it remains unclear whether a magnetometer-free, IMU-based biomechanical model
can provide accurate joint angles during gait beyond one minute duration. Furthermore, it
is unknown whether IMU-based biomechanical models are valid for evaluating stride-to-
stride variability or are sufficiently sensitive to changes in gait kinematics for evaluating
fall risk.

The goal of this study was to validate a magnetometer-free, open-source, IMU-based
biomechanical model of joint angles and stride-to-stride variability for a moderate duration
of continuous gait. We determined the concurrent validity of IMU-based and optoelectronic-
based model measurements of joint angles and joint angle variability from the trunk down
using OpenSim, and determined the sensitivity of discrete measurements of joint angles
and joint angle variability to different gait conditions. We hypothesized that joint angle
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and joint angle variability measurements from the IMU-based model would be accurate
and consistent with the optoelectronic-based model, and that changes in angles and angle
variability under different gait conditions would be detected similarly in the two models.

2. Methods
2.1. Participants

Fourteen healthy young adults (7 males, 7 females) were recruited as a convenience
sample from the Ottawa, Canada area. While the IMU-based model is intended for use in
older adults as well, young adults were tested to first establish feasibility of the methods
and modelling. This sample size (n = 12, with 2 extra to account for possible data attrition)
was determined a priori using G*Power [32] based on our sensitivity analyses and reflects
the number of participants needed to detect a large effect size (partial η2 ≥ 0.14) for a
within-group factor with three measurement levels (speed: preferred, slow, fast; swing:
preferred, active, bound) at a power of 0.80 and an α of 0.05. Participants were excluded if
they had a musculoskeletal injury in the preceding 6 months, or any chronic neurological
or orthopaedic disorders. Participants all provided written informed consent to this study,
which followed the Declaration of Helsinki and was approved by the University of Ottawa
Research Ethics Board (H-01-21-6261).

2.2. Instrumentation

Following informed consent, the participants donned spandex motion capture pants
and their own athletic shoes. Participants were then instrumented for optoelectronic-
and IMU-based motion capture (Figure 1). An 11-camera optoelectronic system (Vantage,
Vicon, Oxford, UK) sampled trajectories of spherical retroreflective markers at 120 Hz using
Nexus 2.11 (Vicon, Oxford, UK). Markers were placed on the participant’s body using
double-sided tape, following the marker locations used with the full-body model for gait
simulations in OpenSim from Rajagopal et al. (Link: https://simtk.org/projects/full_body
(accessed on 1 March 2021)) [33]. Anatomical markers were placed on each wrist (radial
and ulnar styloid process), on each elbow (medial and lateral epicondyle), on the trunk
(left and right acromion process, right clavicular head, spinous process of C7), on the
pelvis (left and right anterior superior iliac spine, left and right posterior superior iliac
spine), on each knee (medial and lateral femoral condyle), on each ankle (medial and lateral
malleolus), and on each foot (heel, 1st and 5th metatarsal head). The dynamic marker set
was modified to add redundancy such that rigid-body clusters of four markers (rather than
three) were positioned using Velcro straps on the trunk and each forearm, arm, thigh, and
shank. Anatomical markers on the feet, pelvis, and the lateral malleoli doubled as dynamic
markers for these segments.

IMU-based motion capture was performed using a platform of eight wearable sensors
(Dot, Xsens, Enschede, The Netherlands) and a mobile application (Xsens Dot Precision
Motion Tracking) for synchronized acquisition of the raw accelerometer and gyroscope
data from each sensor. IMU sensors were positioned on the feet (top of the shoe), shanks
(anterior aspect, distal and immediately above the malleoli), thighs (anterior aspect, around
the largest circumference), pelvis (posterior aspect under the posterior superior iliac spines),
and trunk (posterior aspect at the level of the sternum). IMUs were oriented such that
the positive xyz axes in the sensor frame in anatomical position were directed leftward,
upward, and forward, respectively. Raw accelerations and angular velocities were sampled
at 60 Hz using the mobile application in data logging mode.

2.3. Experimental Procedure

Following instrumentation, preferred gait speed was identified according to the proce-
dure of Dingwell and Marin [34]. With the participant blinded to the speed and walking
slowly on the treadmill, gait speed was progressively increased until they reported that
the speed was “faster than preferred”. Speed was then progressively decreased until they
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reported that the speed was “slower than preferred”. This sequence was then repeated
three times, with the average of the six speeds defined as the preferred gait speed.
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Figure 1. Participant in standing pose on the treadmill showing the dynamic marker set, inertial
measurement unit positions (strapped to segments, circled in orange), and the wooden block.

Following a static calibration of the anatomical markers with the participant in stand-
ing pose, the participant completed five gait trials on the treadmill (Horizon Fitness,
Cottage Grove, WI, USA). Each trial began with a 30 s procedure to warm up the sensors,
with the feet oriented on the treadmill using a wooden block to minimize inter-trial and
inter-individual differences in foot excursion posture (Figure 1). The participant stood
quietly for the first 5 s, leaned forward for the next 10 s, then returned to quiet standing for
the final 15 s. After this baseline procedure, the block was removed and the participant
completed seven minutes of walking. This sequence was repeated for five trials, each
under a different gait condition that varied by gait speed and/or arm swing magnitude:
(1) preferred gait speed and arm swing; (2) 70% preferred gait speed, preferred arm swing;
(3) 130% preferred gait speed, preferred arm swing; (4) preferred gait speed, active arm
swing (the participant was instructed to swing their arms such that forward swing peaked
when the arm was horizontal); and (5) preferred gait speed, arms bound to the torso (using
straps across the arms and across the elbows). These gait conditions with different speeds
and arm swing amplitudes were evaluated since they have been shown to alter stride-to-
stride variability patterns in gait [35–39], providing a basis for exploring the sensitivity
of the IMU-based model. Gait conditions each lasted seven minutes to record at least six
minutes of consecutive and constant-speed strides. This duration was needed to reach a
minimum of 150 consecutive strides for stable measurements of motor variability [40] and
is also the duration of the six-minute walk test [41], a common assessment of functional
mobility. Condition order was randomized, the participant rested for a minimum of three
minutes between trials, and optoelectronic and IMU data were continuously sampled
during each trial.

2.4. Data Analysis
2.4.1. Optoelectronic-Based Biomechanical Modelling

Marker trajectories were labelled, gap-filled with a Woltring spline [42], and low-
pass filtered at 10 Hz using Nexus (v2.11, Vicon Inc., Oxford, UK). Filtered trajectories
were then imported into OpenSim v4.1 [31] and used to simulate motion of a full-body
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model containing 37 degrees of freedom (DOF) and 80 muscle–tendon units actuating the
lower limbs [33]. This model includes a 3-DOF trunk (relative to pelvis; flexion, lateral
bending, rotation), a 6-DOF pelvis (relative to ground; tilt, obliquity, rotation), 3-DOF hips
(flexion, abduction, rotation), 1-DOF knees (flexion), 2-DOF ankles (flexion, inversion),
and 1-DOF metatarsophalangeal joints (flexion). For simplicity and consistency, angles
in the sagittal, frontal, and transverse planes will be described as flexion/extension (FE),
abduction/adduction (AA), and internal/external rotation (IE), respectively. The 1-DOF
toe joints were locked since toe motion was not recorded by IMUs. The model was scaled
to the participant using the positions of the anatomical markers in the static trial; joint
angles in each trial were then computed via an inverse kinematic analysis that minimized
the least-squared distance between each pair of experimental and model markers. Upper-
limb markers were not included in the analysis since no IMUs were placed on the upper
limbs and applying weights to the upper-limb markers that equaled weights of lower-
limb markers did not influence the inverse kinematics solution (Supplementary Material:
Figure S1). Marker weights were manually selected to minimize the root-mean-square
error over all marker pairs, resulting in equal weights except for weights of twice the
magnitude for markers on the acromion processes (trunk), anterior and posterior superior
iliac spines (pelvis), and lateral malleoli (shanks).

2.4.2. IMU-Based Biomechanical Modelling

Using Matlab (R2020b, The MathWorks Inc., Natick, MA, USA), raw linear accelera-
tions and angular velocities were fused offline to calculate sensor orientations using the
magnetometer-free algorithm of Madgwick et al. [21]. Orientation drifts were then removed
using a detrending procedure. Beginning at the 20 s timestamp (5 s after the participant
had completed the forward lean and was standing quietly) and endingj at trial completion,
quaternions were converted to ZYX Euler angles and fit to a function using ‘polyfit’. Linear
drift was identified as slope less than −0.0010 rad/s or greater than 0.0010 rad/s and
removed from the Euler angle signal using ‘detrend’, then Euler angles were converted
back to quaternion representation. An example showing the orientation of a sensor before
and after drift removal is provided in the Supplementary Material (Figure S2).

Detrended sensor quaternions were imported into OpenSim using the OpenSense
toolkit to simulate motion of the same full-body biomechanical model [33]. Sensor-to-
segment registration was performed to associate the orientation of each sensor with the
corresponding segment in the model; specifically, each thigh, shank, and foot sensor was
registered, respectively, to each femur, tibia, and talus body segment. Sensor orientations
were converted from their local coordinate systems to the OpenSim coordinate system using
the following sequence of body-fixed rotations: 180◦ about x, then 90◦ about y, and finally
−90◦ about z. IMU segment frames were identified based on the standing pose at the start of
each gait trial: fixed rotational offsets were applied to recorded IMU sensor frames based on
the segment frames of the biomechanical model in a neutral standing pose (i.e., joint flexion
of 0◦), with heading offsets applied to individual IMU sensor frames to match the average
heading and align with the anterior–posterior axis of the biomechanical model [14,15].
As with the optoelectronic-based model, joint angles in each trial were calculated via
inverse kinematics; for the IMU-based model, the solver minimized axis-angle differences
between the IMU segment orientations and IMU sensor orientations [15]. We compensated
for differences between the initial pose of the optoelectronic and IMU models by offsetting
optoelectronic-based joint angle time series by a constant to match the neutral standing
pose of the IMU model. In contrast with the single ankle dorsiflexion/plantarflexion DOF
modelled previously [14,15], we chose to also model ankle inversion/eversion since both
sagittal- and frontal-plane ankle compensations are relevant to gait of aging adults [6].
We explored optoelectronic- and IMU-based inverse kinematic solutions of the 1-DOF and
2-DOF ankle models and confirmed that the additional ankle DOF did not affect the inverse
kinematics solutions for other lower-limb joint angles (Supplementary Material: Figure S1).
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Example animations of the optoelectronic- and IMU-based biomechanical models can be
viewed in the Supplementary Material (Videos S1–S4).

2.5. Calculation of Kinematic Outcomes

Time series of optoelectronic- and IMU-modelled joint angles and linear velocities
of the foot segments were exported to Matlab. Strides were partitioned by the first and
subsequent heel strike events, identified from the tri-dimensional linear velocity vectors
of the calcaneus segments. Linear velocities were low-pass Butterworth filtered with zero
lag (10 Hz cutoff, fourth-order) and the Euclidean norm linear velocity vector was then
calculated. From the Euclidean norm linear velocity, heel strike events were identified as
the local minima immediately following each local maximum (Supplementary Material:
Figure S3). After removing strides in the first 30 s to ensure gait was at steady state, the raw
and time-normalized series (101 points per stride: 0–100%) of joint angles were analyzed
for the subsequent 200 strides. (This was the minimum number of synchronized strides
available for all trials and participants.) Five outcomes were then calculated for each joint
angle, as described below.

2.5.1. Range of Motion (ROM)

The difference between the maximum and minimum angles for each stride in the
time-normalized series. The mean value across strides was computed.

2.5.2. Mean Standard Deviation (meanSD)

A measure of the absolute magnitude of variability, meanSD was calculated using
the time-normalized series. SD was calculated across all strides for each time point
(n = 101 points) and the mean SD across time points (meanSD) was computed.

2.5.3. Maximum Finite-Time Lyapunov Exponent (λmax)

A measure of local dynamic stability, λmax (i.e., the local divergence exponent) was cal-
culated using the continuous series. The continuous series was normalized to 20,000 points
(100 per stride on average), then λmax was computed with 5 embedding dimensions at a
lag of 10 points from 0–0.5 strides (50 points) [4,43]. λmax measures the local divergence of
neighbouring trajectories with higher positive values indicative of higher divergence and
lower local dynamic stability.

2.5.4. Detrended Fluctuation Analysis Scaling Exponent (DFAα)

A measure of statistical persistence, DFAα was calculated as the fluctuation in ROM
across strides, computed as previously described [44,45] and quantifying the extent to
which ROM fluctuations statistically persist. DFAα is non-negative and unitless, with
values greater than 0.5 indicating persistence (i.e., a fluctuation is typically followed by
a fluctuation in the same direction), values less than 0.5 indicating anti-persistence (i.e.,
a fluctuation is typically followed by a fluctuation in the opposite direction), and values
around 0.5 indicating no correlation between consecutive fluctuations [46].

2.5.5. Sample Entropy (SaEn)

A measure of signal regularity, SaEn was calculated using the continuous series,
2 embedding dimensions, and a 0.15 tolerance distance [47]. SaEn can be investigated at
several scales using a multiscale function; we selected a scale factor of 4 which is believed
to be the approximate value where entropy of physiological signals stabilizes during self-
selected slow, normal (usual), and fast walking speeds [47]. To compensate for the influence
of sampling frequency [48], IMU-based joint angles were resampled at 120 Hz to match the
optoelectronic system. SaEn is non-negative and unitless, with higher values indicating
lower regularity.
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2.6. Statistical Analyses
2.6.1. Analyses of IMU-Model Validity

Statistical analyses were completed using SPSS (v27, IBM, Armonk, NY, USA). For each
degree of freedom, we assessed concurrent validity of the IMU-based joint angles and angle
outputs relative to the optoelectronic-based joint angles and angle outputs for 1000 strides
(5 gait conditions × 200 strides). Mean RMSD was calculated for the time-normalized
joint angle series as well as for each outcome variable. For the time series analysis, rel-
ative difference was calculated as the coefficient of variation of RMSD relative to the
optoelectronic-based ROM (CVrom); for the outcome variable analysis, relative difference
was calculated relative to the optoelectronic-based mean (CVmean). Intraclass correlation
coefficients (ICC2,1) and Bland–Altman plot metrics (IMU–optoelectronic measurement
bias, 95% limits of agreement) were computed to examine consistency and agreement
between outcomes. ICC2,1 values less than 0.40, from 0.40 to 0.59, from 0.60 to 0.74, and
greater than or equal to 0.75 were interpreted as poor, fair, good, and excellent consis-
tency, respectively [49]. Biases indicated whether IMU-based outcomes were overestimated
(positive bias) or underestimated (negative bias) on average.

2.6.2. Analyses of IMU-Model Sensitivity

For each degree of freedom and outcome, we assessed the sensitivity of the IMU
model to detect the same within-participant changes as the marker-based model by con-
ducting repeated measures ANOVAs on each model to test for effects of gait speed (speed:
preferred, 70% preferred, 130% preferred) and arm swing (swing: preferred, active, bound).
Greenhouse–Geisser corrections were applied if sphericity was violated, and critical alpha
was set to 0.027 using the Benjamini–Hochberg procedure to account for false discovery rate
due to multiple comparisons [50] (240 p-values: 2 models × 2 statistical effects × 12 angles
× 5 outcomes). Post hoc tests, comparing each condition to preferred speed and preferred
arm swing gait, were made with Bonferroni corrections (p < 0.05).

3. Results
3.1. Participant Characteristics

Participant height, mass, and BMI (mean ± SD) averaged 1.72 ± 0.07 m, 69.6 ± 14.2 kg,
and 23.5 ± 3.9 kg/m2, respectively. Gait at preferred speed averaged 1.12 ± 0.18 m/s
(range: 0.72–1.50), at 70% preferred speed averaged 0.79 ± 0.13 m/s (range: 0.50–1.05 m/s),
and at 130% preferred speed averaged 1.46 ± 0.24 m/s (range: 0.93–1.95).

3.2. IMU-Model Validity
3.2.1. Validity of Joint Angle Time Series

Mean values are presented in Table 1, with ensemble averaged curves for the preferred
speed condition displayed in Figure 2. Based on values pooled across conditions, mean
RMSD was less than 5◦ for all trunk angles, pelvis AA and IE, hip FE, and knee FE, with all
other angles except pelvis FE and ankle AA approaching the 5◦ threshold. RMSD pooled
across conditions and angles was 5.3◦, which dropped to 4.8◦ when ankle AA was excluded.
RMSDs were consistent across 200 consecutive strides, showing that IMU-modelled joint
angles did not drift (Supplementary Material: Figure S4). CVrom averaged 26.9% across
angles, being lowest in the transverse plane for the trunk (16.2%) and pelvis (12.8%), and
lowest in the sagittal plane for the hip (9.2%), knee (6.4%), and ankle (17.1%).

3.2.2. Validity of Joint Angle Range of Motion and Motor Variability Outcomes

Mean values are presented in Table 2, with Bland–Altman plots for each outcome
displayed in Supplementary Material (Figures S5–S9). Good–excellent consistency was
seen for ROM of trunk IE, pelvis AA, pelvis IE, hip FE, and ankle FE (ICC2,1: 0.62–0.85),
for meanSD of all angles except knee FE and ankle AA (ICC2,1: 0.60–0.80), for λmax of all
angles except trunk IE and ankle AA (ICC2,1: 0.67–0.89), for DFAα of trunk IE and ankle
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FE (ICC2,1: 0.62–0.65), and for SaEn of trunk AA, pelvis AA, pelvis IE, and knee FE (ICC2,1:
0.61–0.74).

Table 1. Root mean squared differences (RMSD) and RMSD relative to optoelectronic-modelled range of motion (CVrom) of
the IMU-modelled joint angle time series during gait (N = 200 strides). Values are group means [95% confidence intervals].
Highlights represent pooled differences accepted as reasonable (green: RMSD ≤ 5.0◦), differences approaching reasonable
levels (yellow: 5.0◦ < RMSD ≤ 7.0◦), and differences exceeding reasonable levels (orange: RMSD > 7.0◦).

Angle Gait Condition

Preferred Speed,
Preferred Swing

70% Preferred
Speed,
Preferred
Swing

130% Preferred
Speed,
Preferred
Swing

Preferred
Speed, Active
Swing

Preferred Speed,
Arms Bound Pooled

RMSD (◦)

Trunk FE 3.8 [2.1, 5.5] 4.1 [2.1, 5.5] 4.2 [2.2, 6.2] 4.2 [2.8, 5.6] 3.4 [2.0, 4.8] 4.0 [2.3, 5.6]
Trunk AA 3.6 [2.8, 4.3] 3.6 [2.7, 4.5] 3.9 [3.1, 4.7] 4.3 [3.3, 5.2] 3.4 [2.8, 4.0] 3.7 [2.9, 4.5]
Trunk IE 4.0 [3.1, 5.0] 2.9 [2.5, 3.3] 3.8 [3.2, 4.4] 6.7 [1.9, 11.4] 2.9 [2.5, 3.4] 4.1 [2.6, 5.5]
Pelvis FE 10.6 [7.7, 13.5] 9.6 [6.7, 12.5] 8.1 [5.2, 10.9] 9.2 [6.1, 12.2] 8.8 [5.4, 12.2] 9.2 [6.2, 12.3]
Pelvis AA 2.1 [1.7, 2.5] 2.3 [1.7, 2.8] 2.2 [1.9, 2.5] 2.4 [1.9, 2.5] 2.0 [1.6, 2.4] 2.2 [1.8–2.6]
Pelvis IE 1.9 [1.5, 2.2] 1.7 [1.3, 2.2] 2.1 [1.7, 2.5] 2.0 [1.6, 2.4] 1.8 [1.5, 2.2] 1.9 [1.5, 2.3]
Hip FE 4.4 [3.5, 5.2] 3.7 [3.0, 4.4] 5.8 [4.9, 6.8] 4.2 [3.4, 4.9] 4.5 [3.0, 6.0] 4.5 [3.6, 5.5]
Hip AA 5.5 [4.6, 6.4] 4.8 [4.0, 5.6] 5.8 [4.9, 6.7] 5.4 [4.4, 6.4] 5.5 [4.6, 6.5] 5.4 [4.5, 6.3]
Hip IE 6.1 [5.4, 6.8] 5.8 [4.9, 6.6] 6.5 [5.7, 7.2] 5.8 [5.0, 6.7] 6.7 [5.5, 7.9] 6.2 [5.3, 7.0]
Knee FE 4.6 [3.7, 5.5] 3.7 [3.1, 4.3] 4.8 [3.6, 5.9] 4.0 [3.6, 4.4] 4.7 [3.7, 5.6] 4.3 [3.5, 5.1]
Ankle FE 6.7 [5.6, 7.9] 6.2 [4.9, 7.5] 7.5 [6.2, 8.8] 6.9 [5.4, 8.4] 7.4 [6.0, 8.8] 6.9 [5.6, 8.3]
Ankle AA 12.0 [10.3, 13.6] 10.2 [8.8, 11.5] 12.0 [10.7, 13.2] 11.5 [10.1, 12.9] 12.7 [10.9, 14.5] 11.7 [10.2, 13.2]
Pooled (all) 5.4 [5.0, 5.9] 4.9 [4.5, 5.2] 5.6 [5.2, 5.9] 5.5 [5.0, 6.0] 5.3 [4.9, 5.8] 5.3 [4.9, 5.8]
Pooled (without Ankle AA) 4.8 [4.4, 5.3] 4.4 [4.1, 4.7] 5.0 [4.6, 5.4] 5.0 [4.4, 5.6] 4.6 [4.2, 5.1] 4.8 [4.3, 5.2]

CVrom (%)

Trunk FE 25.5 [16.6, 34.3] 27.9 [17.8, 38.1] 29.4 [16.9, 42.0] 27.7 [19.6, 35.8] 28.2 [17.5, 38.9] 27.7 [17.7, 37.8]

Trunk AA 15.0 [13.0, 17.1] 16.8 [13.7, 20.0] 15.3 [13.0, 17.7] 17.7 [14.5, 20.8] 17.9 [15.1, 19.2] 16.6 [13.9, 19.2]

Trunk IE 15.6 [14.2, 37.8] 14.2 [12.0, 16.5] 13.7 [11.3, 16.1] 22.1 [3.8, 40.4] 15.6 [13.7, 17.5] 16.2 [10.5, 21.9]

Pelvis FE 120.3 [80.3, 160.3] 94.2 [64.7, 123.7] 95.3 [55.5, 135.0] 92.9 [59.5, 126.2] 107.3 [58.5, 156.0] 102.0 [63.7, 140.2]

Pelvis AA 12.3 [10.5, 14.1] 15.2 [11.0, 19.4] 12.0 [10.5, 13.5] 13.4 [11.8, 15.1] 14.4 [11.2, 17.7] 13.5 [11.0, 16.0]

Pelvis IE 13.4 [10.4, 16.3] 12.9 [9.2, 16.5] 12.8 [10.7, 14.9] 11.7 [9.9, 13.6] 13.2 [10.8, 15.7] 12.8 [10.2, 15.4]

Hip FE 9.1 [7.5, 10.6] 8.5 [6.6, 10.5] 11.0 [9.3, 12.6] 8.0 [6.6, 9.4] 9.2 [6.7, 11.8] 9.2 [7.3, 11.0]

Hip AA 23.3 [18.5, 28.2] 21.9 [17.2, 26.5] 22.9 [18.8, 27.0] 22.1 [17.3, 27.0] 28.2 [21.5, 35.0] 23.7 [18.7, 28.7]

Hip IE 32.2 [27.5, 37.0] 30.2 [25.0, 36.1] 32.9 [29.6, 36.1] 29.8 [25.4, 34.1] 35.0 [29.2, 40.9] 32.0 [27.3, 36.7]

Knee FE 6.7 [5.4, 8.0] 5.5 [4.6, 6.4] 7.0 [5.5, 8.5] 6.0 [5.4, 6.7] 6.8 [5.3, 8.3] 6.4 [5.2, 7.6]

Ankle FE 16.2 [13.9, 18.5] 17.2 [14.3, 20.2] 17.7 [15.2, 20.2] 16.6 [13.3, 19.9] 17.6 [14.5, 20.6] 17.1 [14.3, 19.9]

Ankle AA 46.1 [39.6, 52.5] 41.4 [35.4, 47.4] 46.1 [40.8, 51.3] 43.5 [37.3, 49.6] 49.8 [43.0, 56.5] 45.3 [39.2, 51.5]

Pooled (all) 28.0 [23.9, 32.1] 25.5 [22.5, 28.5] 26.3 [22.7, 30.0] 26.0 [22.2, 29.7] 28.6 [24.2, 33.0] 26.9 [23.1, 30.7]

Pooled (without Ankle AA) 26.3 [22.2, 30.5] 24.1 [21.0, 27.1] 24.5 [20.7, 28.4] 24.4 [20.5, 28.3] 26.7 [21.9, 31.5] 25.2 [21.2, 29.2]

FE: flexion/extension; AA: abduction/adduction; IE: internal/external rotation.

Differences [absolute: RMSD (relative: CVmean)] between outcomes with good–excellent
consistency were 2.0–7.7◦ (5.0–38.3%) for ROM, 0.14–0.61◦ (10.9–50.0%) for meanSD,
0.20–0.61 (3.9–17.8%) for λmax, 0.16–0.17 (16.6–17.2%) for DFAα, and 0.07–0.24 (15.1–63.1%)
for SaEn.

Significant mean biases (defined as cases where the 95% confidence interval did not
cross zero; Table 2) indicated that the IMU model underestimated ROM of the trunk, pelvis,
and ankle FE by 0.4–7.0◦, but overestimated ROM of frontal plane hip and ankle angles
by 3.1–6.8◦. For stride-to-stride variability outcomes, the IMU model underestimated
meanSD of trunk IE and pelvis AA by 0.08–0.52◦, λmax of trunk IE by 0.23, DFAα of pelvis
AA and hip AA by 0.07, and SaEn of pelvis FE, hip AA, hip IE, knee FE, and ankle AA
by 0.02–0.12. These outcomes were more frequently overestimated by the IMU model,
with higher meanSD (0.04–0.56◦) and λmax (0.20–1.13) for most angles, higher DFAα of
ankle AA (0.12), and higher SaEn of trunk AA, trunk IE, pelvis AA, pelvis IE, hip FE,
and ankle FE (0.04–0.19). These biases approximated the optoelectronic-measured inter-
individual standard deviations in our sample and in measurements from other studies
for joint angle ROM [51], meanSD [35,39], DFAα [39], and SaEn [5,39], but exceeded
inter-individual standard deviations for joint angle λmax [4,39]. The Bland–Altman plots
(Supplementary Material: Figures S5–S9) show that nearly all measurement differences
(14 participants × 5 conditions = 70 values) fell within the 95% limits of agreement, with
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few outliers in ROM (N = 1–5), meanSD (N = 2–5), λmax (N = 1–4), DFAα (N = 1–5), and
SaEn (N = 0–6) of individual angles.
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3.3. IMU-Model Sensitivity

Precise descriptives (means, 95% confidence intervals) and statistical effects (p-values)
for each outcome can be found in Supplementary Material (videos S1 and S2). Since consis-
tency was generally poor to moderate for DFAα and SaEn, indicating a lack of acceptable
concurrent validity, the sensitivity of these outcomes was not explored.

ROM (Figure 3). Speed effects: The models detected similar responses relative to
preferred-speed gait, with decreased ROM of trunk AA, trunk IE, pelvis AA, hip FE, hip IE,
and ankle FE at 70% preferred speed, and increased ROM of trunk AA, trunk IE, pelvis AA,
pelvis IE, hip angles, and ankle FE at 130% preferred speed. Differing responses, where
only one model detected a significant change, were found at 70% preferred speed for pelvis
IE, hip AA, knee FE, and ankle AA, and at 130% preferred speed for ankle AA. The changes
detected, however, followed the same trends of decreased ROM at 70% preferred speed
and increased ROM at 130% preferred speed. Swing effects: The models also detected
similar changes relative to preferred arm swing during active swing, with increased ROM
of pelvis IE and hip FE, decreased ROM of knee FE, and no change in ROM of trunk FE,
trunk AA, pelvis FE, pelvis AA, hip AA, hip IE, ankle FE, and ankle AA. With arms bound,
both models detected decreased ROM of trunk IE and pelvis AA, and no change for pelvis
FE, hip FE, hip IE, ankle FE, and ankle AA.
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Table 2. Validity of IMU-modelled vs. optoelectronic-modelled joint angle outcomes for gait. Outcomes are range of
motion (ROM), mean standard deviation (meanSD), local divergence exponent (λmax), detrended fluctuation analysis
scaling exponent for range of motion (DFAα), and sample entropy (SaEn). Validity metrics are intraclass correlation
coefficients (ICC2,1), root mean square difference (RMSD), coefficient of variation of the optoelectronic mean (CVmean), IMU–
optoelectronic bias, and 95% limits of agreement (LOA95%). Values are group means [95% confidence intervals]. Highlights
represent excellent (dark green: ICC2,1 ≥ 0.75), good (green: 0.60 ≤ ICC2,1 < 0.75), fair (yellow: 0.40 ≤ ICC2,1 < 0.60), and
poor (orange: ICC2,1 < 0.40) consistency.

Angle ICC2,1 RMSD CVmean Bias
LOA95%

Lower Upper

ROM

Trunk FE 0.13 [−0.11, 0.35] 2.5 [2.1, 2.9] 26.1 [22.3, 29.8] −1.3 [−1.8, −0.8] * −5.4 [−5.9, −4.9] 2.8 [2.3, 3.3]
Trunk AA 0.48 [0.28, 0.64] 7.8 [7.0, 8.6] 41.3 [38.3, 44.4] −7.0 [−7.8, −6.2] * −13.6 [−14.3, −12.8] −0.5 [−1.3, 0.3]
Trunk IE 0.85 [0.77, 0.90] 7.7 [6.8, 8.6] 38.3 [34.8, 41.7] −6.7 [−7.6, −5.8] * −14.1 [−15.0, −13.2] 0.7 [−0.2, 1.6]
Pelvis FE 0.03 [−0.26, 0.21] 1.8 [1.5, 2.1] 26.2 [20.8, 31.5] −0.4 [−0.8, 0.0] * −3.8 [−4.2, −3.4] 3.0 [2.6, 3.4]
Pelvis AA 0.62 [0.46, 0.75] 4.8 [4.2, 5.3] 32.6 [28.5, 35.6] −4.1 [−4.7, −3.6] * −8.8 [−9.4, −8.2] 0.5 [0.0, 1.1]
Pelvis IE 0.84 [0.75, 0.90] 2.0 [1.7, 2.4] 14.8 [12.1, 17.6] −0.5 [−0.9, 0.0] * −4.4 [−4.9, −3.9] 3.5 [3.0, 4.0]
Hip FE 0.84 [0.75, 0.90] 2.8 [2.4, 3.3] 5.0 [3.8, 6.1] 0.1 [−0.6, 0.8] −5.5 [−6.2, −4.8] 5.7 [5.0, 6.4]
Hip AA 0.24 [−0.01, 0.45] 8.5 [7.5, 9.6] 44.8 [36.9, 52.7] 6.8 [5.5, 8.0] * −3.5 [−4.9, −2.3] 17.1 [15.8, 18.3]
Hip IE −0.11 [−0.35, −0.13] 4.8 [4.2, 5.4] 36.9 [30.4, 43.4] 0.4 [−0.7, 1.6] −9.1 [−10.2, −7.9] 9.9 [8.7, 11.0]
Knee FE 0.26 [0.02, 0.47] 6.9 [5.9, 7.9] 8.8 [7.2, 10.3] −1.4 [−3.0, 0.2] −14.7 [−16.4, 13.1] 11.9 [10.3, 13.5]
Ankle FE 0.76 [0.64, 0.85] 4.7 [4.1, 5.4] 12.4 [10.3, 14.5] −1.2 [−2.3, −0.1] * −10.3 [−11.4, −9.2] 7.8 [6.7, 8.9]
Ankle AA 0.10 [−0.14, 0.34] 8.4 [7.2, 9.6] 33.0 [26.6, 39.3] 3.1 [1.2, 5.0] * −12.3 [−14.2, −10.4] 18.5 [16.6, 20.3]

meanSD

Trunk FE 0.63 [0.46, 0.75] 0.29 [0.25, 0.34] 17.8 [14.1, 21.6] 0.07 [0.00, 0.14] * −0.49 [−0.56, −0.42] 0.63 [0.56, 0.70]
Trunk AA 0.79 [0.68, 0.86] 0.18 [0.15, 0.22] 10.9 [8.6, 13.1] 0.02 [−0.02, 0.07] −0.34 [−0.38, −0.29] 0.38 [0.34, 0.43]
Trunk IE 0.80 [0.70, 0.87] 0.60 [0.54, 0.66] 36.3 [33.6, 39.1] −0.52 [−0.59, −0.45] * −1.10 [−1.17, −1.03] 0.06 [−0.01, 0.13]
Pelvis FE 0.77 [0.65, 0.85] 0.16 [0.13, 0.18] 12.7 [10.1, 15.2] 0.04 [0.00, 0.07] * −0.26 [−0.30, −0.22] 0.33 [0.30, 0.37]
Pelvis AA 0.60 [0.43, 0.73] 0.14 [0.12, 0.17] 12.7 [10.2, 15.2] −0.08 [−0.11, −0.05] * −0.32 [−0.35, −0.29] 0.16 [0.13, 0.19]
Pelvis IE 0.64 [0.48, 0.76] 0.28 [0.23, 0.32] 19.7 [15.1, 24.2] 0.20 [0.15, 0.24] * −0.19 [−0.242, −0.15] 0.59 [0.54, 0.63]
Hip FE 0.80 [0.69, 0.87] 0.23 [0.20, 0.26] 17.5 [14.4, 20.6] 0.16 [0.12, 0.20] * −0.16 [−0.20, −0.12] 0.48 [0.44, 0.52]
Hip AA 0.70 [0.56, 0.81] 0.14 [0.12, 0.16] 12.6 [10.1, 15.0] 0.06 [0.03, 0.09] * −0.18 [−0.21, −0.15] 0.30 [0.27, 0.33]
Hip IE 0.69 [0.54, 0.80] 0.20 [0.17, 0.23] 12.5 [9.9, 15.1] 0.10 [0.06, 0.14] * −0.24 [−0.28, −0.20] 0.44 [0.40, 0.48]
Knee FE 0.48 [0.27, 0.65] 0.40 [0.34, 0.46] 20.7 [15.6, 25.9] 0.19 [0.10, 0.27] * −0.51 [−0.60, −0.43] 0.89 [0.80, 0.97]
Ankle FE 0.68 [0.53, 0.79] 0.61 [0.55, 0.66] 50.0 [43.5, 56.5] 0.56 [0.50, 0.62] * 0.10 [−0.04, 0.16] 1.02 [0.97, 1.08]
Ankle AA 0.24 [0.00, 0.46] 0.38 [0.32, 0.43] 25.6 [20.7, 30.5] 0.20 [0.13, 0.28] * −0.42 [−0.49, −0.34] 0.83 [0.75, 0.90]

λmax

Trunk FE 0.72 [0.58, 0.82] 0.54 [0.48, 0.60] 14.3 [12.3, 16.2] 0.44 [0.37, 0.52] * −0.18 [−0.25, −0.10] 1.06 [0.99, 1.14]
Trunk AA 0.85 [0.77, 0.91] 0.40 [0.36, 0.44] 10.5 [9.3, 11.7] 0.36 [0.32, 0.40] * 0.04 [−0.00, 0.08] 0.69 [0.65, 0.72]
Trunk IE 0.59 [0.40, 0.73] 0.34 [0.29, 0.39] 6.5 [5.3, 7.7] −0.23 [−0.29, −0.17] * −0.73 [−0.79, −0.67] 0.27 [0.21, 0.33]
Pelvis FE 0.89 [0.82, 0.93] 0.61 [0.56, 0.66] 17.8 [16.1, 19.5] 0.58 [0.52, 0.63] * 0.16 [0.10, 0.21] 1.00 [0.95, 1.05]
Pelvis AA 0.82 [0.71, 0.88] 0.37 [0.32, 0.41] 10.1 [8.6, 11.6] 0.32 [0.27, 0.36] * −0.05 [−0.10, −0.01] 0.69 [0.64, 0.73]
Pelvis IE 0.67 [0.51, 0.78] 0.22 [0.19, 0.25] 3.9 [3.1, 4.7] −0.04 [−0.09, 0.01] −0.47 [−0.52, −0.42] 0.39 [0.34, 0.44]
Hip FE 0.87 [0.80, 0.92] 0.20 [0.17, 0.22] 4.2 [3.5, 4.9] −0.04 [−0.09, 0.01] −0.42 [−0.47, −0.37] 0.34 [0.29, 0.39]
Hip AA 0.78 [0.66, 0.86] 0.31 [0.28, 0.34] 8.4 [7.5, 9.4] 0.27 [0.23, 0.30] * −0.02 [−0.05, 0.02] 0.56 [0.52, 0.59]
Hip IE 0.75 [0.62, 0.84] 0.44 [0.39, 0.49] 12.7 [10.9, 14.5] 0.38 [0.33, 0.43] * −0.06 [−0.11, 0.00] 0.82 [0.77, 0.87]
Knee FE 0.74 [0.61, 0.84] 0.40 [0.34, 0.46] 7.4 [5.9, 8.9] 0.20 [0.12, 0.28] * −0.48 [−0.56, −0.40] 0.88 [0.79, 0.96]
Ankle FE 0.74 [0.60, 0.83] 0.45 [0.41, 0.50] 13.0 [11.4, 14.5] 0.40 [0.35, 0.45] * −0.02 [−0.07, 0.03] 0.82 [0.77, 0.87]
Ankle AA 0.37 [0.14, 0.56] 1.17 [1.10, 1.25] 51.1 [45.9, 56.4] 1.13 [1.05, 1.21] * 0.49 [0.41, 0.56] 1.77 [1.69, 1.85]

DFAα

Trunk FE 0.40 [0.18, 0.58] 0.21 [0.18, 0.24] 22.7 [17.2, 28.2] −0.03 [−0.08, 0.02] −0.44 [−0.49, −0.39] 0.38 [0.33, 0.43]
Trunk AA 0.27 [0.04, 0.48] 0.19 [0.16, 0.22] 18.7 [14.8, 22.6] −0.05 [−0.09, 0.00] −0.42 [−0.46, −0.37] 0.32 [0.28, 0.37]
Trunk IE 0.65 [0.49, 0.76] 0.17 [0.15, 0.20] 16.6 [13.0, 20.2] −0.00 [−0.04, 0.04] −0.34 [−0.38, −0.30] 0.34 [0.30, 0.38]
Pelvis FE 0.36 [0.14, 0.55] 0.20 [0.17, 0.23] 25.5 [20.4, 30.7] 0.01 [−0.04, 0.05] −0.39 [−0.44, −0.25] 0.40 [0.35, 0.45]
Pelvis AA 0.48 [0.28, 0.64] 0.21 [0.18, 0.24] 21.2 [17.7, 24.7] −0.07 [−0.12, −0.03] * −0.47 [−0.52, −0.42] 0.32 [0.27, 0.37]
Pelvis IE 0.46 [0.25, 0.63] 0.16 [0.14, 0.19] 17.6 [13.3, 21.9] 0.03 [−0.01, 0.06] −0.29 [−0.33, −0.25] 0.34 [0.30, 0.38]
Hip FE 0.50 [0.30, 0.66] 0.20 [0.17, 0.23] 21.0 [16.8, 25.3] −0.02 [−0.06, 0.03] −0.41 [−0.46, −0.36] 0.38 [0.33, 0.43]
Hip AA 0.37 [0.14, 0.56] 0.23 [0.20, 0.27] 21.3 [17.4, 25.1] −0.07 [−0.12, −0.01] * −0.50 [−0.56, −0.45] 0.37 [0.32, 0.43]
Hip IE 0.13 [−0.12, 0.36] 0.24 [0.21, 0.27] 26.7 [21.8, 31.6] −0.04 [−0.10, 0.02] −0.51 [−0.56, −0.45] 0.43 [0.37, 0.48]
Knee FE 0.43 [0.21, 0.61] 0.20 [0.17, 0.23] 20.0 [16.1, 23.9] 0.02 [−0.03, 0.07] −0.37 [−0.42, −0.32] 0.41 [0.36, 0.46]
Ankle FE 0.62 [0.44, 0.75] 0.16 [0.13, 0.18] 17.2 [13.4, 21.0] 0.02 [−0.02, 0.06] −0.29 [−0.33, −0.25] 0.33 [0.29, 0.37]
Ankle AA −0.05 [−0.29, 0.20] 0.31 [0.35, 0.26] 35.9 [28.2, 43.7] 0.12 [0.05, 0.19] * −0.44 [−0.51, −0.38] 0.68 [0.61, 0.75]

SaEn

Trunk FE 0.56 [0.38, 0.70] 0.18 [0.15, 0.20] 17.0 [13.8, 20.2] 0.02 [−0.02, 0.06] −0.33 [−0.37, −0.29] 0.36 [0.32, 0.41]
Trunk AA 0.61 [0.44, 0.74] 0.19 [0.16, 0.21] 29.8 [23.3, 36.3] 0.15 [0.13, 0.18] * −0.05 [−0.08, −0.03] 0.36 [0.34, 0.39]
Trunk IE 0.48 [0.28, 0.64] 0.10 [0.08, 0.12] 16.1 [12.3, 19.9] 0.04 [0.01, 0.06] * −0.15 [−0.17, −0.13] 0.22 [0.20, 0.24]
Pelvis FE 0.53 [0.34, 0.68] 0.22 [0.19, 0.26] 16.7 [14.1, 19.4] −0.12 [−0.16, −0.07] * −0.49 [−0.54, −0.45] 0.26 [0.22, 0.31]
Pelvis AA 0.68 [0.54, 0.79] 0.12 [0.10, 0.13] 15.1 [12.1, 18.1] 0.06 [0.03, 0.08] * −0.15 [−0.17, −0.12] 0.26 [0.23, 0.28]
Pelvis IE 0.64 [0.48, 0.76] 0.24 [0.21, 0.27] 63.1 [47.9, 78.4] 0.19 [0.15, 0.22] * −0.11 [−0.14, −0.07] 0.48 [0.45, 0.52]
Hip FE 0.44 [0.23, 0.62] 0.05 [0.04, 0.06] 17.9 [14.3, 21.4] 0.04 [0.03, 0.04] * −0.04 [−0.05, −0.03] 0.11 [0.10, 0.12]
Hip AA 0.17 [−0.08, 0.39] 0.15 [0.13, 0.17] 23.5 [20.0, 27.0] −0.09 [−0.12, −0.06] * −0.33 [−0.36, −0.30] 0.15 [0.12, 0.18]
Hip IE −0.12 [−0.35, 0.12] 0.25 [0.22, 0.29] 21.3 [17.2, 25.4] −0.04 [−0.10, −0.02] * −0.53 [−0.59, −0.47] 0.46 [0.40, 0.52]
Knee FE 0.74 [0.61, 0.83] 0.07 [0.05, 0.08] 16.5 [12.8, 20.2] −0.02 [−0.04, −0.01] * −0.14 [−0.16, −0.13] 0.10 [0.08, 0.11]
Ankle FE 0.46 [0.24, 0.63] 0.13 [0.11, 0.14] 24.6 [20.2, 29.0] 0.10 [0.08, 0.12] * −0.06 [−0.08, −0.04] 0.26 [0.24, 0.28]
Ankle AA 0.10 [−0.14, 0.34] 0.19 [0.16, 0.22] 26.8 [22.1, 31.6] −0.03 [−0.08, −0.01] * −0.40 [−0.44, −0.35] 0.34 [0.29, 0.38]

FE: flexion/extension; AA: abduction/adduction; IE: internal/external rotation. * significant bias (95% confidence interval did not
cross zero).
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(blue) and IMU-driven (red) biomechanical models of constant-speed treadmill gait. Conditions displayed on the horizontal
axis are preferred speed and arm swing (100), 70% preferred speed (70), 130% preferred speed (130), active arm swing
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meanSD (Figure 4). Speed effects: The models detected similar non-responses to
speed changes for meanSD of trunk FE, trunk IE, ankle FE, and ankle AA. However,
optoelectronic-based model increases in meanSD at 70% preferred speed (trunk AA, pelvis
FE, pelvis AA, hip FE, hip AA, knee FE) and at 130% preferred speed (pelvis IE) went
undetected by the IMU-based model. Swing effects: Relative to preferred arm swing, the
models detected similar increases in meanSD (trunk AA, pelvis AA, pelvis IE, hip AA, hip
IE) and non-responses (trunk FE, hip FE, knee FE) during active arm swing, as well as
similar non-responses with arms bound (trunk FE, pelvis FE, pelvis AA, and all hip, knee,
and ankle angles). Optoelectronic-detected increases in meanSD of trunk AA and IE and
decreases for pelvis IE with arms bound went undetected by the IMU-based model.

λmax (Figure 5). Speed effects: The models detected similar responses to speed changes
in λmax of joint angles with few exceptions. Both models detected increases in λmax at
70% preferred speed (trunk FE, trunk AA, pelvis-down angles), decreases in λmax at 130%
preferred speed (trunk FE, pelvis FE, pelvis AA, hip AA, hip IE, ankle AA), and no response
in λmax of knee FE at 130% preferred speed. Swing effects: The models also detected similar
λmax responses relative to preferred arm swing, with increases in trunk FE, pelvis angles,
hip AA, hip IE, and ankle FE during active swing, and decreases in trunk IE, but increases
in pelvis IE, with arms bound. Similar non-responses in λmax of ankle AA during active
swing and of trunk FE, hip FE, hip AA, knee FE, ankle FE, and ankle AA with arms bound
were also seen.
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Figure 5. Boxplots of local divergence exponent (λmax) of trunk, pelvis, and lower-limb joint angles for the optoelectronic-
driven (blue) and IMU-driven (red) biomechanical models of constant-speed treadmill gait. Conditions displayed on the
horizontal axis are preferred speed and arm swing (100), 70% preferred speed (70), 130% preferred speed (130), active arm
swing (AS), and arms bound (AB). Red crosses are outliers > 2 * interquartile range. Angles include flexion/extension (FE),
abduction/adduction (AA), and internal/external rotation (IE).
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4. Discussion
4.1. Validity of IMU-Modelled Joint Angle Time Series

Using a full-body biomechanical model with muscle-actuated lower limbs [33] to
analyze several 7-min conditions of gait kinematics, our findings confirm that driving this
model with IMUs (using the OpenSense open-source toolkit for OpenSim) produces, on
average, accurate joint angle time series relative to the optoelectronic-driven model, with
the exception of pelvis tilt, swing-phase hip rotation and swing-phase ankle inversion.
RMSD across all gait speed and arm swing conditions averaged 5.3◦; when ankle inversion
was excluded from this calculation, RMSD averaged 4.8◦, an accuracy viewed as acceptable
for many clinical applications [29]. This amount of accuracy and the range in RMSD
among individual joints (1.7–7.5◦) agrees with recent findings from the developers [14,15].
One observation from our ensemble-averaged lower-limb joint angles (Figure 2) was that
optoelectronic–IMU differences were notable in the non-sagittal plane during swing (e.g.,
hip abduction, hip rotation, and ankle inversion), potentially due to the relatively small
ROMs of these angles in combination with the higher segmental velocities during swing.
Nonetheless, we report an accuracy for hip rotation (pooled RMSD of 6.2◦) that improved
upon the developers’ findings (10–12◦). Because allowing ankle inversion/eversion in
addition to dorsiflexion/plantarflexion did not affect the inverse kinematics solution for
hip rotation (see, for example, Figure S1), we believe our improvement in accuracy is
attributable to omitting magnetometer data when using Madgwick’s gradient-descent
fusion algorithm [21] and, instead, identifying negative (<−0.0010 rad/s) and positive
(>0.0010 rad/s) linear orientation drifts and detrending these offline. Extending previous
findings, we also found RMSDs of IMU-modelled trunk and pelvis angles (1.7–6.6◦) that
were similar to those of the joints in the lower limb. Thus, with the notable exceptions
of pelvis tilt, hip rotation, and ankle inversion, our findings indicate that joint angle time
series for the trunk and below can be estimated on average with acceptable accuracy during
walking over a wide range of walking speeds and arm swing amplitudes.

4.2. Validity of IMU-Modelled Joint Angle Outcomes

The concurrent validity of the joint angle time series, however, did not extend to
the discrete outcomes to the same extent. For ROM, as reported by Beange et al. [52,53],
optoelectronic–IMU consistency was excellent in the primary plane of movement (trunk
rotation, pelvis rotation, hip flexion, ankle dorsiflexion) with RMSDs similar to the corre-
sponding time series (ROM: 2.0–7.7◦; time series: 1.9–6.9◦), but consistency was often poor
in the non-primary movement planes. Therefore, measurement consistency of ROM for the
secondary and tertiary planes was not improved by using a biomechanically constrained
kinematic model. RMSDs for the secondary and tertiary planes (1.8–8.5◦) were comparable
to those of the primary movement plane, confirming the findings of Beange et al. [52,53]
and likely due to the lower ROMs about the secondary and tertiary planes; future IMU-
modelling work of lower-limb joint kinematics could investigate whether consistency is
higher in locomotor tasks with similar segmental velocities that include larger ROMs in
the frontal and transverse planes, such as walking with side-stepping and/or turning.
ROM was also below proposed limits of agreement of ±10◦ [54] for only 6 of the 12 degrees
of freedom we analyzed, with underestimation biases (trunk rotation and ankle flexion)
partly responsible. Together, these findings show that acceptable validity of a joint angle
time series does not necessarily translate to acceptable validity in the discrete outcomes of
that time series. Specifically, our IMU model estimates joint angle ROM accurately, but has
inconsistencies in the non-primary movement planes and limitations in absolute agreement.

For motor variability outcomes, consistency was best for λmax and meanSD, reaching
good–excellent levels for nearly all degrees of freedom with RMSDs of 0.22–0.61◦ and
0.14–0.61◦, respectively. Our findings agree with the high optoelectronic–IMU consistency
in λmax reported for repetitive spine flexion/extension [55] and support the concurrent
validity of IMU-based measurements of joint local dynamic stability. For the first time, we
demonstrate high consistency and accuracy for joint angles with low range of motion and
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beyond the primary plane of movement, providing a new validated model for investigating
magnitude of variability and local dynamic stability in tridimensional joint motion from
stride to stride. Caution is advised regarding the absolute agreement of our outcomes since
we were unable to identify limits of agreement in the literature for comparison and since
the IMU-based model biases showed that λmax and meanSD were each underestimated for
trunk rotation but overestimated for hip, knee, and ankle angles.

DFAα and SaEn were not sufficiently consistent to be considered valid in their present
computational form (DFAα ICC2,1: −0.05–0.65; SaEn ICC2,1: −0.12–0.74). DFAα inconsis-
tencies may be partly derived from ROM inconsistencies since we investigated fluctuations
of this discrete metric. This is supported by our finding that the only two angles with good
consistency in DFAα (trunk rotation, ankle dorsiflexion) also had excellent consistency
in ROM, indicating that improvement in calculation of ROM is likely to produce more
valid analyses of fluctuation persistence. SaEn inconsistencies may be due to changes in
the information of joint angles in the IMU-driven model. The calculation of this metric
for continuous series of joint angles is sensitive to the sampling frequency, the tolerance
ratio r, and the embedding dimension m [48]. We resampled IMU-based joint angles to
compensate for sampling frequency and selected r and m values which produced stable
measurements in slow and fast gait [47]. However, specific tuning of SaEn parameters
to IMU-based kinematic models is likely needed. Alternatively, calculation of SaEn may
be more robust to tuning parameters by analyzing the discrete ROM series rather than
the continuous joint angle series [48], but this also relies on improving the estimation of
ROM. Therefore, use of IMU-based biomechanical models to investigate the persistence
and regularity of joint angle fluctuations in gait requires improvements to the estimation of
ROM and the identification of appropriate SaEn calculation parameters for IMU-derived
joint angles.

4.3. Sensitivity of IMU-Modelled Joint Angle Outcomes to Within-Participant Effects

Our results show, for the first time, that joint angle outcomes estimated from an
IMU-driven biomechanical model were also sensitive to within-participant responses
detected by an optoelectronic-driven model in the majority of cases. Relative to gait at
preferred speed and with preferred arm swing, responses to changes in speed and arm
swing amplitude were detected identically between models for 36/48 comparisons for
ROM, 27/48 comparisons for meanSD, and 34/48 comparisons for λmax. Model-detected
responses are in agreement with several previous findings, including increases in joint ROM
with fast speed and decreases with slow speed [56], increases in SD of trunk kinematics
and meanSD of lower-limb angles with active arm swing [38,39], and increases in λmax of
hip abduction with active arm swing [39]. Although our trunk motion responses appear
to disagree with reported increases in meanSD with fast speed [35], increases in λmax
with fast speed [36], and decreases in λmax with active arm swing [37], differences can be
attributed to the reference frame of the trunk (relative to the pelvis in our study vs. relative
to ground in [35]) and to the sensitivity of the λmax state-space to different inputs [57]
(time-delayed joint angles in our study vs. velocities and accelerations [36] vs. time-
delayed velocities [37]). In the minority of cases where our optoelectronic and IMU models
detected different responses, directionality never disagreed, and differences were mostly
due to the IMU-based model detecting no response when a change was detected by the
optoelectronic-based model. In these cases, there were no statistically significant changes
for the IMU-based model, but all means moved in the same direction as the optoelectronic-
based model (Tables S1 and S2). As the probability of this due to chance is very low, it
seems that IMU-modelled responses had smaller effect sizes than this study was powered
to detect, due to smaller changes in magnitude and/or larger group variance. Furthermore,
the excess limits of agreement for some ROMs did not influence sensitivity of the IMU
model, as responses in ROM for angles exceeding limits of ±10◦ [54] were the same in
many cases during gait at fast speed (trunk abduction, trunk rotation, ankle dorsiflexion), at
slow speed (trunk abduction, trunk rotation, hip abduction, ankle dorsiflexion), with active
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arm swing (trunk abduction, pelvis flexion, hip abduction, knee flexion, ankle dorsiflexion,
ankle inversion), and with bound arms (trunk rotation, ankle flexion, ankle inversion).
Together, these findings show that the IMU-driven biomechanical model is sensitive to
within-group responses in ROM, meanSD, and λmax, and suggest that larger sample sizes
may further improve sensitivity by compensating for smaller effect sizes.

4.4. Limitations

IMU-driven biomechanical simulations of movement are a new area for investigation
and have important limitations. In our study, these were specific to the demographics
of our sample, the biomechanical model, and how gait was studied. As a first step for
modelling motor variability in gait, we recruited a convenience sample of healthy young
adult males and females whose average BMI was in the “normal” range. Our motivation
for investigating motor variability in gait, however, is to investigate stride-to-stride control
of older adults as it relates to fall risk [3]. Confirmation of validity and sensitivity of an
IMU-driven biomechanical model is still needed in older populations living with and
without neurological conditions.

To mitigate differences attributed to different initial model poses in our evaluation of
validity, we decided to offset the optoelectronic model to match the standing pose of the
IMU model at the first frame, similar to the approach of Al Borno et al. [15]. This is unre-
alistic for situations where an optoelectronic system is unavailable to establish the initial
IMU model pose. Adding the average correction (3.8◦ [15]) to the RMSD differences would
produce differences that exceed limits tolerable for clinical applications [29]. However,
ROM and motor variability were unaffected by this offset, and further IMU calibration
procedures [58] are unlikely to affect validity or sensitivity of these measures. Thus, we
expect that our conclusions on the validity of our outcomes can be generalized to situations
where only IMU sensors are available.

Finally, we investigated performance of the IMU-driven model during treadmill gait,
where stride-to-stride variability is lower than in overground gait [59,60]. Treadmills
allow for analyses at constant speed and over a large number of continuous strides; for
example, more than 100 strides are needed to reliably quantify SD of stride time and
λmax of tridimensional trunk acceleration [40]. Large numbers of strides can be recorded
in optoelectronic-based overground studies when gait involves turning and strides are
discontinuous [61] but calculation of local dynamic stability requires continuous time series.
Use of a treadmill was the only practical way for us to quantify motor variability of straight-
line continuous walking with the metrics we calculated and using the optoelectronic and
IMU motion capture systems simultaneously. Simultaneous measurement with these
systems was necessary to test the validity of our model. We are unaware of a clear reason
that our findings would not hold for overground gait since our IMU orientations do
not rely on magnetometers, which are sensitive to fluctuations in heterogeneity of the
local magnetic field, and the suitability of IMU-driven biomechanical models for joint
kinematic evaluations in overground locomotion is promising [14,15,27]. Nonetheless, the
sensitivity of the IMU-driven model should be confirmed for overground evaluations of
stride-to-stride control.

5. Conclusions

In summary, excluding pelvis tilt and swing-phase hip rotation and ankle inversion,
IMU-based joint angle time series were acceptably accurate from the trunk down, ROM
was acceptably consistent and accurate in the primary plane of motion, and magnitude
of variability and local dynamic stability were acceptably consistent and accurate in all
planes of motion. Validity was supported by the sensitivity of the IMU model to gait
speed and arm swing amplitude-related responses in ROM, magnitude of variability, and
local dynamic stability in the majority of cases. However, IMU-modelled estimates of
ROM fluctuation persistence and of angle regularity were not acceptably consistent or
accurate. We conclude that, for moderate-duration walking at slow and fast speeds, the
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IMU-driven, magnetometer-free, open-source biomechanical model used in this study
provides valid estimates of joint angle time series, ROM in the primary plane of motion,
stride-to-stride magnitude of variability, and stride-to-stride local dynamic stability which
are also sensitive to within-participant responses. This provides a new way to evaluate
biomechanical control of walking outside of the lab and clinic.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21227690/s1, Figure S1: Inverse kinematics solutions to optoelectronic-based models with
and without upper-limb weights, and to optoelectronic- and IMU-based models for 1- and 2-degree-
of-freedom ankles, Figure S2: Removal of orientation drift from IMUs, Figure S3: Identification of
heel strikes from optoelectronic- and IMU-modelled calcaneus linear velocities, Figure S4: Root-
mean-squared difference of IMU-based joint angles relative to optoelectronic motion capture as a
function of stride number, Figures S5–S9: Bland-Altman plots of joint angle range of motion and joint
angle variability outcomes, Tables S1 and S2: Summarized optoelectronic- and IMU-based joint angle
outcome data and sensitivity to gait speed and arm swing differences, Videos S1–S4: Animations of
the optoelectronic-based and IMU-based biomechanical models for preferred speed and arm swing
gait in a representative subject.
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