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Abstract  1 

Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical 2 

joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement 3 

unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy 4 

young adults completed seven-minute trials of treadmill gait at several speeds and arm swing 5 

amplitudes. Joint kinematics were estimated by IMU- and optoelectronic-based models using 6 

OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local 7 

dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each 8 

angle over 200 continuous strides, and evaluated model accuracy (e.g., RMSD: root mean square 9 

difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and 10 

sensitivity to within-participant gait responses (effects of Speed and Swing). RMSDs of joint 11 

angles were 1.7–7.5° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good–12 

excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but 13 

were poor–moderate for DFAα and SaEn. Modeled Speed and Swing responses for ROM, 14 

meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive 15 

for field-based assessments of joint angles and several motor variability features. 16 

 17 

Keywords: gait, human movement, inertial measurement unit, joint kinematics, local dynamic 18 

stability, musculoskeletal model, OpenSim, persistence, regularity, stride-to-stride variability  19 
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1. Introduction 20 

Motor variability, the natural variability in sensorimotor actions [1], is well-linked to 21 

walking-related fall risk. Elderly fallers exhibit greater stride-to-stride variability in 22 

spatiotemporal outputs (e.g., stride time) compared to non-fallers [2,3]. This difference may 23 

emerge from altered stride-to-stride joint angle patterns that have been observed with older age, 24 

including lower local dynamic stability [4], lower regularity [5], and a shift in the magnitude of 25 

variability in ankle motion from the sagittal to the frontal plane [6]. Monitoring the variability of 26 

joint angles in aging adults at a larger scale could help better understand the salient elements of 27 

stride-to-stride control that predict falls, which could better individualize fall-prevention 28 

interventions. However, measurements of joint angles (and variability from stride to stride) 29 

typically rely on optoelectronic motion capture systems that are expensive, require training and 30 

expertise to operate, and involve intensive data acquisition and processing procedures. 31 

Optoelectronic motion capture of gait is also restricted to treadmills [4,5] or short distances 32 

overground [6], which may not fully replicate the stride-to-stride variability that occurs over 33 

longer distances and durations overground. Using this motion capture approach, large-scale 34 

evaluations of motor variability in realistic and clinically relevant gait scenarios are infeasible. 35 

Wearable inertial measurement units (IMUs) offer an alternative technology for 36 

estimating joint angles that can address these limitations of optoelectronic motion capture. IMUs 37 

have been used to estimate joint kinematics since 1990 [7], with recent work showing that IMU-38 

based kinematic models of lower-limb activities achieve absolute differences (i.e., accuracies) 39 

ranging from 1 to 10° relative to optoelectronic-based models [8–14] and good–excellent 40 

consistencies in the sagittal plane timeseries [8,11,15,16]. Some IMU-based kinematic models 41 

are built based on machine learning approaches [12], but most others typically involve (i) 42 
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estimating the IMU orientation by fusing accelerometer and gyroscope data, (ii) estimating the 43 

anatomical segment orientation by applying a sensor-to-segment calibration, and (iii) calculating 44 

joint angles as the relative orientation between reference frames fixed to adjacent body segments 45 

(see [17] for review). A particular obstacle to the longer-duration recordings necessary to 46 

measure stride-to-stride kinematics is preventing IMU-sensor orientation drift attributed to 47 

sensor fusion. Strap-down integration of an IMU on a non-stabilized segment amplifies random 48 

noise in linear accelerations and angular velocities, leading to drift in the estimated orientations. 49 

Many sensor fusion algorithms address horizontal drift by incorporating data on the Earth’s 50 

magnetic field detected by the magnetometer [18–22]; however, detection of the magnetic field 51 

is disturbed locally by ferromagnetic materials [23]. Beyond the magnetometer, drift corrections 52 

are possible over short durations by adding zero-velocity updates [24] and over short distances 53 

by adding localization using technologies like ultrawideband [10], but these approaches do not 54 

provide a solution for long durations or distances.  55 

 Anatomical joint constraints in the underlying kinematic model can help to mitigate drift 56 

over long durations and distances. Using the OpenSense toolkit to compute inverse kinematics of 57 

a biomechanical model with IMU inputs, Al Borno et al. [14] recently demonstrated root mean 58 

squared differences (RMSD) of 3–6° for IMU-based hip flexion, hip abduction, knee flexion, 59 

and ankle dorsiflexion angles relative to optoelectronic motion capture, with near-zero drift 60 

(from 0.14 to 0.17°/min) over ten minutes of walking. This supports the earlier findings of Kok 61 

et al. [25] and provides a new open-source option for constructing an IMU-based kinematic 62 

model. This inverse kinematics approach to solving joint angles has the added benefit of 63 

mitigating experimental (i.e., non-biological) noise [26], which could particularly benefit 64 

evaluations of motor variability. Although constrained optimization problems like inverse 65 
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kinematics can require high computation time to solve, recent work from Slade et al. [13] 66 

demonstrated that a real-time IMU-based solution is possible. They reported RMSD in joint 67 

angles of approximately 5°, a difference accepted as reasonable for many clinical applications 68 

[27]. The OpenSense extension of OpenSim [28,29] provides the first open-source platform for 69 

IMU-based biomechanical modelling and a free alternative to cost-prohibitive and closed-source 70 

commercial models [18]. Because Al Borno et al. [14] used the magnetometer to calculate drift-71 

free kinematics and Slade et al. [13] reported kinematic drifts in their magnetometer-free solution, 72 

it remains unclear whether a magnetometer-free, IMU-based biomechanical model can provide 73 

accurate joint angles during gait beyond one minute duration. Furthermore, it is unknown 74 

whether IMU-based biomechanical models are valid for evaluating stride-to-stride variability or 75 

are sufficiently sensitive to changes in gait kinematics for evaluating fall risk. 76 

 The goal of this study was to validate a magnetometer-free, open-source, IMU-based 77 

biomechanical model of joint angles and stride-to-stride variability for a moderate duration of 78 

continuous gait. We determined the concurrent validity of IMU-based and optoelectronic-based 79 

model measurements of joint angles and joint angle variability from the trunk down using 80 

OpenSim, and determined the sensitivity of discrete measurements of joint angles and joint angle 81 

variability to different gait conditions. We have made the data underlying the findings of this 82 

study freely available online, enabling others to reproduce and extend our work. 83 

2. Methods 84 

2.1 Participants 85 

Fourteen healthy young adults (7 males, 7 females) were recruited as a convenience 86 

sample from the Ottawa, Canada area. This sample size (n = 12, with 2 extra to account for 87 
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possible data attrition) was determined a priori using G*Power [30] based on our sensitivity 88 

analyses and reflects the number of participants needed to detect a large effect size (partial η2 ≥ 89 

0.14) for a within-group factor with three measurement levels (Speed: preferred, slow, fast; 90 

Swing: preferred, active, bound) at a power of 0.80 and an α of 0.05. Participants were excluded 91 

if they had a musculoskeletal injury in the preceding 6 months, or any chronic neurological or 92 

orthopaedic disorders. Participants all provided written informed consent to the study, which 93 

followed the Declaration of Helsinki and was approved by the University of Ottawa Research 94 

Ethics Board (H-01-21-6261).  95 

2.2 Instrumentation  96 

 Following informed consent, the participants donned spandex motion capture pants and 97 

their own athletic shoes. Participants were then instrumented for optoelectronic- and IMU-based 98 

motion capture (Figure 1). An 11-camera optoelectronic system (Vantage, Vicon, Oxford, UK) 99 

sampled trajectories of spherical retroreflective markers at 120 Hz using Nexus 2.11 (Vicon, 100 

Oxford, UK). Markers were placed on the participant’s body using double-sided tape, following 101 

the marker locations used with the full-body model for gait simulations in OpenSim from 102 

Rajagopal et al. (Link: https://simtk.org/projects/full_body) [31]. Anatomical markers were 103 

placed on each wrist (radial and ulnar styloid process), on each elbow (medial and lateral 104 

epicondyle), on the trunk (left and right acromion process, right clavicular head, spinous process 105 

of C7) , on the pelvis (left and right anterior superior iliac spine, left and right posterior superior 106 

iliac spine), on each knee (medial and lateral femoral condyle), on each ankle (medial and lateral 107 

malleolus), and on each foot (heel, 1st and 5th metatarsal head). The dynamic marker set was 108 

modified to add redundancy such that rigid-body clusters of four markers (rather than three) were 109 

positioned using Velcro straps on the trunk and each forearm, arm, thigh, and shank. Anatomical 110 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461967doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461967
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

markers on the feet, pelvis, and the lateral malleolus markers on the shank doubled as dynamic 111 

markers for these segments. 112 

 IMU-based motion capture was performed using a platform of eight wearable sensors 113 

(Dot, Xsens, Enschede, Netherlands) and a mobile application (Xsens Dot Precision Motion 114 

Tracking) for synchronized acquisition of the raw accelerometer and gyroscope data from each 115 

sensor. IMU sensors were positioned on the feet (top of the shoe), shanks (anterior aspect, distal 116 

and immediately above the malleoli), thighs (anterior aspect, around the largest circumference), 117 

pelvis (posterior aspect under the posterior superior iliac spines), and trunk (posterior aspect at 118 

the level of the sternum). IMUs were oriented such that the positive ��� axes in the sensor frame 119 

in anatomical position were directed leftward, upward, and forward, respectively. Raw 120 

accelerations and angular velocities were sampled at 60 Hz using the mobile application in data 121 

logging mode.  122 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461967doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461967
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

 123 
Figure 1. Participant in standing pose on the treadmill showing the dynamic marker set, inertial measurement unit positions 124 
(strapped to segments, circled in orange), and the wooden block. 125 

2.3 Experimental procedure 126 

 Following instrumentation, preferred gait speed was identified according to the procedure 127 

of Dingwell and Marin [32]. With the participant blinded to the speed and walking slowly on the 128 

treadmill, gait speed was progressively increased until they reported that the speed was “faster 129 

than preferred”. Speed was then progressively decreased until they reported that the speed was 130 

“slower than preferred”. This sequence was then repeated three times, with the average of the six 131 

speeds defined as the preferred gait speed.  132 

 Following a static calibration of the anatomical markers with the participant in standing 133 

pose, the participant completed five gait trials on the treadmill (Horizon Fitness, WI, USA). Each 134 

trial began with a 30-second procedure to warm up the sensors, with the feet oriented on the 135 
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treadmill using a wooden block to minimize inter-trial and inter-individual differences in foot 136 

excursion posture (Figure 1). The participant stood quietly for the first 5 seconds, leaned forward 137 

for the next 10 seconds, then returned to quiet standing for the final 15 seconds. After this 138 

baseline procedure, the block was removed and the participant completed seven minutes of 139 

walking. This sequence was repeated for five trials, each under a different gait condition that 140 

varied by gait speed and/or arm swing magnitude: 1) preferred gait speed and arm swing; 2) 70% 141 

preferred gait speed, preferred arm swing; 3) 130% preferred gait speed, preferred arm swing; 4) 142 

preferred gait speed, active arm swing (the participant was instructed to swing their arms such 143 

that forward swing peaked when the arm was horizontal); and 5) preferred gait speed, arms 144 

bound to the torso (using straps across the arms and across the elbows). Different gait speeds and 145 

arm swing amplitudes were evaluated since they have been shown to alter stride-to-stride 146 

variability patterns in gait [33–37], providing a basis for exploring the sensitivity of the IMU-147 

based model. Condition order was randomized, the participant rested for a minimum of three 148 

minutes between trials, and optoelectronic and IMU data were continuously sampled during each 149 

trial. 150 

2.4 Data Analysis 151 

2.4.1 Optoelectronic-based biomechanical modelling. Marker trajectories were labeled, 152 

gap-filled with a Woltring spline [38], and low-pass filtered at 10 Hz using Nexus (v2.11, Vicon 153 

Inc., Oxford, UK). Filtered trajectories were then imported into OpenSim v4.1 [29] and used to 154 

simulate motion of a full-body model containing 37 degrees of freedom (DOF) and 80 muscle–155 

tendon units actuating the lower limbs [31]. This model includes a 3-DOF trunk (relative to the 156 

pelvis), a 6-DOF pelvis (relative to ground), 3-DOF hips, 1-DOF knees, 2-DOF ankles, and 1-157 

DOF toes. The 1-DOF toe joints were locked since toe motion was not recorded by IMUs. The 158 
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model was scaled to the participant using the positions of the anatomical markers in the static 159 

trial; joint angles in each trial were then computed via an inverse kinematic analysis that 160 

minimized the least-squared distance between each pair of experimental and model markers. 161 

Upper-limb markers were not included in the analysis since no IMUs were placed on the upper 162 

limbs and applying weights to the upper-limb markers that equaled weights of lower-limb 163 

markers did not influence the inverse kinematics solution (Supplementary material: Figure S1). 164 

Marker weights were manually selected to minimize the root-mean-square error over all marker 165 

pairs, resulting in equal weights except for weights of twice the magnitude for markers on the 166 

acromion processes (trunk), anterior and posterior superior iliac spines (pelvis), and lateral 167 

malleoli (shanks). 168 

2.4.2 IMU-based biomechanical modelling. Using Matlab (R2020b, The MathWorks 169 

Inc., MA, USA), raw linear accelerations and angular velocities were fused offline to calculate 170 

sensor orientations using the magnetometer-free algorithm of Madgwick et al. [19]. Orientation 171 

drifts were then removed using a detrending procedure. Beginning at the 20-second timestamp (5 172 

seconds after the participant had completed the forward lean and was standing quietly) and 173 

ending at trial completion, quaternions were converted to ZYX Euler angles and fit to a function 174 

using ‘polyfit’. Linear drift was identified as slope less than -0.0010 rad/s or greater than 0.0010 175 

rad/s and removed from the Euler angle signal using ‘detrend’, then Euler angles were converted 176 

back to quaternion representation. An example showing the orientation of a sensor before and 177 

after drift removal is provided in the supplementary material (Figure S2).  178 

 Detrended sensor quaternions were imported into OpenSim using the OpenSense toolkit 179 

to simulate motion of the same full-body biomechanical model [31]. Sensor-to-segment 180 

registration was performed to associate the orientation of each sensor with the corresponding 181 
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segment in the model; specifically, each thigh, shank, and foot sensor was registered, 182 

respectively, to each femur, tibia, and talus body segment. Sensor orientations were converted 183 

from their local coordinate systems to the OpenSim coordinate system using the following 184 

sequence of body-fixed rotations: 180° about x, then 90° about y, and finally -90° about z. IMU 185 

segment frames were identified based on the standing pose at the start of each gait trial: fixed 186 

rotational offsets were applied to recorded IMU sensor frames based on the segment frames of 187 

the biomechanical model in a neutral standing pose (i.e., joint flexion of 0°), with heading offsets 188 

applied to individual IMU sensor frames to match the average heading and align with the 189 

anterior–posterior axis of the biomechanical model [13,14].  As with the optoelectronic-based 190 

model, joint angles in each trial were calculated via inverse kinematics; for the IMU-based 191 

model, the solver minimized axis-angle differences between the IMU segment orientations and 192 

IMU sensor orientations [14]. We compensated for differences between the initial pose of the 193 

optoelectronic and IMU models by offsetting optoelectronic-based joint angle timeseries by a 194 

constant to match the neutral standing pose of the IMU model. In contrast with the single ankle 195 

dorsiflexion/plantarflexion DOF modeled previously [13,14], we chose to also model ankle 196 

inversion/eversion since both sagittal- and frontal-plane ankle compensations are relevant to gait 197 

of aging adults [6]. We explored optoelectronic- and IMU-based inverse kinematic solutions of 198 

the 1-DOF and 2-DOF ankle models and confirmed that the additional ankle DOF did not affect 199 

the inverse kinematics solutions for other lower-limb joint angles (Supplementary material: 200 

Figure S1). Example animations of the optoelectronic- and IMU-based biomechanical models 201 

can be viewed in the supplementary material (Videos S1–S4). 202 

2.5 Calculation of kinematic outcomes. Timeseries of optoelectronic- and IMU-modeled joint 203 

angles and linear velocities of the foot segments were exported to Matlab. Strides were 204 
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partitioned by the first and subsequent heel strike events, identified from the tri-dimensional 205 

linear velocity vectors of the calcaneus segments. Linear velocities were low-pass Butterworth 206 

filtered with zero lag (10 Hz cutoff, fourth-order) and the Euclidean norm linear velocity vector 207 

was then calculated. From the Euclidean norm linear velocity, heel strike events were identified 208 

as the local minima immediately following each local maximum (Supplementary material: 209 

Figure S3). After removing strides in the first 30 seconds to ensure gait was at steady state, the 210 

raw and time-normalized series (101 points per stride: 0–100%) of joint angles were analyzed for 211 

the subsequent 200 strides. (This was the minimum number of synchronized strides available for 212 

all trials and participants.) Five outcomes were then calculated for each joint angle, as described 213 

below. 214 

2.5.1 Range of motion (ROM). The difference between the maximum and minimum 215 

angles for each stride in the time-normalized series. The mean value across strides was computed. 216 

2.5.2 Mean standard deviation (meanSD). A measure of the absolute magnitude of 217 

variability, meanSD was calculated using the time-normalized series. SD was calculated across 218 

all strides for each time point (n = 101 points) and the mean SD across time points (meanSD) 219 

was computed. 220 

2.5.3 Maximum finite-time Lyapunov exponent (λmax). A measure of local dynamic 221 

stability, λmax (i.e., the local divergence exponent) was calculated using the continuous series. 222 

The continuous series was normalized to 20,000 points (100 per stride on average), then λmax was 223 

computed with 5 embedding dimensions at a lag of 10 points from 0–0.5 strides (50 points) 224 

[4,39]. λmax measures the local divergence of neighbouring trajectories with higher positive 225 

values indicative of higher divergence and lower local dynamic stability. 226 
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2.5.4 Detrended fluctuation analysis scaling exponent (DFAα). A measure of 227 

statistical persistence, DFAα was calculated as the fluctuation in ROM across strides, computed 228 

as previously described [40,41] and quantifying the extent to which ROM fluctuations 229 

statistically persist. DFAα is non-negative and unitless, with values greater than 0.5 indicating 230 

persistence (i.e., a fluctuation is typically followed by a fluctuation in the same direction), values 231 

less than 0.5 indicating anti-persistence (i.e., a fluctuation is typically followed by a fluctuation 232 

in the opposite direction), and values around 0.5 indicating no correlation between consecutive 233 

fluctuations [42].  234 

2.5.5 Sample entropy (SaEn). A measure of regularity, SaEn was calculated using the 235 

continuous series, 2 embedding dimensions, and a 0.15 tolerance distance [43]. SaEn can be 236 

investigated at several scales using a multiscale function; we selected a scale factor of 4 which is 237 

believed to be the approximate value where entropy of physiological signals stabilizes during 238 

self-selected slow, normal (usual), and fast walking speeds [43]. To compensate for the influence 239 

of sampling frequency [44], IMU-based joint angles were resampled at 120 Hz to match the 240 

optoelectronic system. SaEn is non-negative and unitless, with higher values indicating lower 241 

regularity. 242 

2.6 Statistical Analyses 243 

2.6.1 Analyses of IMU-model validity. For each degree of freedom, we assessed 244 

concurrent validity of the IMU-based joint angles and angle outputs relative to the 245 

optoelectronic-based joint angles and angle outputs for 1000 strides (5 gait conditions × 200 246 

strides). Mean RMSD was calculated for the time-normalized joint angle series as well as for 247 

each outcome variable. For the timeseries analysis, relative difference was calculated as the 248 
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coefficient of variation of RMSD relative to the optoelectronic-based ROM (CVrom); for the 249 

outcome variable analysis, relative difference was calculated relative to the optoelectronic-based 250 

mean (CVmean). Intraclass correlation coefficients (ICC2,1) and Bland-Altman plot metrics (IMU–251 

optoelectronic measurement bias, 95% limits of agreement) were computed to examine 252 

consistency and agreement between outcomes. ICC2,1 values less than 0.40, from 0.40 to 0.59, 253 

from 0.60 to 0.74, and greater than or equal to 0.75 were interpreted as poor, fair, good, and 254 

excellent consistency, respectively [45]. Biases indicated whether IMU-based outcomes were 255 

overestimated (positive bias) or underestimated (negative bias) on average. 256 

2.6.2 Analyses of IMU-model sensitivity. For each degree of freedom and outcome, we 257 

assessed the sensitivity of the IMU model to detect the same within-participant changes as the 258 

marker-based model by conducting repeated measures ANOVAs on each model to test for 259 

effects of gait speed (Speed: preferred, 70% preferred, 130% preferred) and arm swing (Swing: 260 

preferred, active, bound). Greenhouse-Geisser corrections were applied if sphericity was violated, 261 

and critical alpha was set to 0.027 using the Benjamini-Hochberg procedure to account for false 262 

discovery rate due to multiple comparisons [46] (240 p-values: 2 models × 2 statistical effects × 263 

12 angles × 5 outcomes). Post-hoc tests, comparing each condition to preferred speed and 264 

preferred arm swing gait, were made with Bonferroni corrections (p < 0.05). 265 

3. Results 266 

3.1 Participant characteristics 267 

 Participant height, mass, and BMI (mean ± SD) averaged 1.72 ± 0.07 m, 69.6 ± 14.2 kg, 268 

and 23.5 ± 3.9 kg/m2, respectively. Gait at preferred speed averaged 1.12 ± 0.18 m/s (range: 269 
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0.72–1.50), at 70% preferred speed averaged 0.79 ± 0.13 m/s (range: 0.50–1.05 m/s), and at 270 

130% preferred speed averaged 1.46 ± 0.24 m/s (range: 0.93–1.95). 271 

3.2 IMU-model validity 272 

3.2.1 Timeseries. Mean values are presented in Table 1, with ensemble averaged curves 273 

for the preferred speed condition displayed in Figure 2. For consistency, angles in the sagittal, 274 

frontal, and transverse planes will be described as flexion/extension (FE), abduction/adduction 275 

(AA), and internal/external rotation (IE), respectively. Based on values pooled across conditions, 276 

mean RMSD was less than 5° for all trunk angles, pelvis FE, hip FE, and knee FE, with all other 277 

angles except ankle AA approaching the 5° threshold. RMSD pooled across conditions and 278 

angles was 5.3°, which dropped to 4.8° when ankle AA was excluded. RMSDs were consistent 279 

across 200 consecutive strides, showing that IMU-modeled joint angles did not drift 280 

(Supplementary material: Figure S4). CVrom averaged 25.4% across angles, being lowest in the 281 

transverse plane for the trunk (16.2%) and pelvis (12.8%), and lowest in the sagittal plane for the 282 

hip (9.2%), knee (6.4%), and ankle (17.1%).  283 
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Table 1. Root mean squared differences (RMSD) and RMSD relative to optoelectronic-modeled range of motion (CVrom) of the IMU-modeled joint angle timeseries during gait 284 
(N = 200 strides). Values are group means [95% confidence intervals]. Highlights represent pooled differences accepted as reasonable (green: RMSD ≤ 5.0°), differences 285 
approaching reasonable levels (yellow: 5.0° < RMSD ≤ 7.0°), and differences exceeding reasonable levels (orange: RMSD > 7.0°). 286 

 Angle Gait condition 
  Preferred speed, 

preferred swing 
70% preferred speed, 
preferred swing 

130% preferred speed, 
preferred swing 

Preferred speed, 
active swing 

Preferred speed, 
arms bound 

Pooled 

RMSD 
(°) 

Trunk FE 3.8 [2.1,5.5] 4.1 [2.1,5.5] 4.2 [2.2,6.2] 4.2 [2.8,5.6] 3.4 [2.0,4.8] 4.0 [2.3,5.6] 
Trunk AA 3.6 [2.8,4.3] 3.6 [2.7,4.5] 3.9 [3.1,4.7] 4.3 [3.3,5.2] 3.4 [2.8,4.0] 3.7 [2.9,4.5] 
Trunk IE 4.0 [3.1,5.0] 2.9 [2.5,3.3] 3.8 [3.2,4.4] 6.7 [1.9,11.4] 2.9 [2.5,3.4] 4.1 [2.6,5.5] 
Pelvis FE 6.6 [5.4,7.7] 5.7 [4.4,7.0] 6.0 [5.0,7.0] 6.3 [4.9,7.6] 5.8 [4.4,7.3] 6.1 [4.8,7.3] 
Pelvis AA 6.0 [4.7,7.3] 5.6 [4.4,6.8] 5.2 [3.9,6.4] 5.3 [4.2,6.5] 4.7 [3.4,6.1] 5.4 [4.1,6.6] 
Pelvis IE 1.9 [1.5,2.2] 1.7 [1.3,2.2] 2.1 [1.7,2.5] 2.0 [1.6,2.4] 1.8 [1.5,2.2] 1.9 [1.5,2.3] 
Hip FE 4.4 [3.5,5.2] 3.7 [3.0,4.4] 5.8 [4.9,6.8] 4.2 [3.4,4.9] 4.5 [3.0,6.0] 4.5 [3.6,5.5] 
Hip AA 5.5 [4.6,6.4] 4.8 [4.0,5.6] 5.8 [4.9,6.7] 5.4 [4.4,6.4] 5.5 [4.6,6.5] 5.4 [4.5,6.3] 
Hip IE 6.1 [5.4,6.8] 5.8 [4.9,6.6] 6.5 [5.7,7.2] 5.8 [5.0,6.7] 6.7 [5.5,7.9] 6.2 [5.3,7.0] 
Knee FE 4.6 [3.7,5.5] 3.7 [3.1,4.3] 4.8 [3.6,5.9] 4.0 [3.6,4.4] 4.7 [3.7,5.6] 4.3 [3.5,5.1] 
Ankle FE 6.7 [5.6,7.9] 6.2 [4.9,7.5] 7.5 [6.2,8.8] 6.9 [5.4,8.4] 7.4 [6.0,8.8] 6.9 [5.6,8.3] 
Ankle AA 12.0 [10.3,13.6] 10.2 [8.8,11.5] 12.0 [10.7,13.2] 11.5 [10.1,12.9] 12.7 [10.9,14.5] 11.7 [10.2,13.2] 
Pooled (all) 5.4 [3.7,7.1] 4.8 [3.3,6.3] 5.6 [4.0,7.3] 5.5 [3.5,7.6] 5.3 [3.4,7.2] 5.3 [3.6,7.1] 
Pooled 
(without 
Ankle AA) 

4.8 [4.4,5.2] 4.3 [4.0,4.6] 5.1 [4.6,5.5] 5.0 [4.5,5.5] 4.6 [4.2,5.0] 4.8 [4.4,5.2] 

CVrom 
(%) 

Trunk FE 25.5 [16.6,34.3] 27.9 [17.8,38.1] 29.4 [16.9,42.0] 27.7 [19.6,35.8] 28.2 [17.5,38.9] 27.7 [17.7,37.8] 
Trunk AA 15.0 [13.0,17.1] 16.8 [13.7,20.0] 15.3 [13.0,17.7] 17.7 [14.5,20.8] 17.9 [15.1,19.2] 16.6 [13.9,19.2] 
Trunk IE 15.6 [14.2,37.8] 14.2 [12.0,16.5] 13.7 [11.3,16.1] 22.1 [3.8,40.4] 15.6 [13.7,17.5] 16.2 [10.5,21.9] 
Pelvis FE 40.7 [31.5,49.9] 39.1 [28.6,49.7] 33.4 [25.9,40.9] 35.6 [27.3,43.8] 43.3 [31.7,54.9] 38.4 [29.0,47.8] 
Pelvis AA 67.9 [48.8,87.1] 56.4 [42.9,70.0] 59.1 [41.6,76.6] 53.7 [40.1,67.4] 57.6 [36.9,78.3] 59.0 [42.1,75.8] 
Pelvis IE 13.4 [10.4,16.3] 12.9 [9.2,16.5] 12.8 [10.7,14.9] 11.7 [9.9,13.6] 13.2 [10.8,15.7] 12.8 [10.2,15.4] 
Hip FE 9.1 [7.5,10.6] 8.5 [6.6,10.5] 11.0 [9.3,12.6] 8.0 [6.6,9.4] 9.2 [6.7,11.8] 9.2 [7.3,11.0] 
Hip AA 23.3 [18.5,28.2] 21.9 [17.2,26.5] 22.9 [18.8,27.0] 22.1 [17.3,27.0] 28.2 [21.5,35.0] 23.7 [18.7,28.7] 
Hip IE 32.2 [27.5,37.0] 30.2 [25.0,36.1] 32.9 [29.6,36.1] 29.8 [25.4,34.1] 35.0 [29.2,40.9] 32.0 [27.3,36.7] 
Knee FE 6.7 [5.4,8.0] 5.5 [4.6,6.4] 7.0 [5.5,8.5] 6.0 [5.4,6.7] 6.8 [5.3,8.3] 6.4 [5.2,7.6] 
Ankle FE 16.2 [13.9,18.5] 17.2 [14.3,20.2] 17.7 [15.2,20.2] 16.6 [13.3,19.9] 17.6 [14.5,20.6] 17.1 [14.3,19.9] 
Ankle AA 46.1 [39.6,52.5] 41.4 [35.4,47.4] 46.1 [40.8,51.3] 43.5 [37.3,49.6] 49.8 [43.0,56.5] 45.3 [39.2,51.5] 
Pooled (all) 26.0 [14.2,37.8] 24.3 [14.2,34.5] 25.1 [14.4,35.8] 24.6 [13.8,25.3] 26.9 [15.1,38.7] 25.4 [14.3,36.4] 
Pooled 
(without 
Ankle AA) 

24.1 [21.0,27.3] 22.8 [20.2,25.4] 23.2 [20.5,25.9] 22.8 [19.7,26.0] 24.8 [21.5,28.1] 23.6 [20.6,26.5] 

FE: flexion/extension; AA: abduction/adduction; IE: internal/external rotation 287 
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 288 
Figure 2. Ensemble averaged joint angles from the optoelectronic and inertial measurement unit (IMU) models during  gait at 289 
preferred speed and with preferred arm swing. Angles include flexion/extension (FE), abduction/adduction (AA), and 290 
internal/external rotation (IE). 291 

 3.2.2 Outcomes. Mean values are presented in Table 2, with Bland-Altman plots for each 292 

outcome displayed in Figures 3–7. Good–excellent consistency was seen for ROM of trunk IE, 293 

pelvis IE, hip FE, and ankle FE (ICC2,1: 0.76–0.85), for meanSD of trunk angles, pelvis IE, hip 294 

angles, and ankle FE (ICC2,1: 0.63–0.80), for λmax of all angles except trunk IE and ankle AA 295 

(ICC2,1: 0.67–0.87), for DFAα of trunk IE and ankle FE (ICC2,1: 0.62–0.65), and for SaEn of 296 

trunk AA, pelvis IE, and knee FE (ICC2,1: 0.61–0.74).  297 

Differences [absolute: RMSD (relative: CVmean)] between outcomes with good–excellent 298 

consistency were 2.0–7.7° (5.0–38.3%) for ROM, 0.14–0.61° (10.9–50.0%) for meanSD, 0.20–299 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461967doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461967
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

0.72 (3.9–20.4%) for λmax, 0.16–0.17 (16.6–17.2%) for DFAα, and 0.07–0.24 (16.5–63.1%) for 300 

SaEn.  301 

Significant mean biases (defined as cases where the 95% confidence interval did not 302 

cross zero; Table 2) indicated that the IMU model underestimated ROM of the trunk and sagittal 303 

plane pelvis and ankle angles by 1.2–7.9°, but overestimated ROM of frontal plane pelvis, hip, 304 

and ankle angles by 3.1–6.8° (Figure 3). For stride-to-stride variability outcomes, the IMU model 305 

underestimated meanSD of trunk IE and pelvis AA by 0.26–0.52° (Figure 4), λmax of trunk IE by 306 

0.23, DFAα of pelvis FE and hip AA by 0.09–0.11 (Figure 5), and SaEn of pelvis AA, hip AA, 307 

hip IE, knee FE, and ankle AA by 0.02–0.34 (Figure 7). These outcomes were more frequently 308 

overestimated by the IMU model, with higher meanSD (0.06–0.56°, Figure 4) and λmax (0.20–309 

0.65, Figure 5) for most angles, higher DFAα of ankle AA (0.12, Figure 6), and higher SaEn of 310 

trunk AA, trunk IE, pelvis FE, pelvis IE, hip FE, and ankle FE (0.04-0.28, Figure 7). These 311 

biases approximated the optoelectronic-measured inter-individual standard deviations in our 312 

sample and in measurements from other studies for joint angle ROM [47], meanSD [33,37], 313 

DFAα [37], and SaEn [5,37], but exceeded inter-individual standard deviations for joint angle 314 

λmax [4,37]. The Bland-Altman plots (Figures 3–7) show that nearly all measurement differences 315 

(14 participants × 5 conditions = 70 values) fell within the 95% limits of agreement, with few 316 

outliers in ROM (N = 1–5), meanSD (N = 2–5), λmax (N = 1–4), DFAα (N = 1–5), and SaEn (N = 317 

0–6) of individual angles.  318 
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Table 2. Validity of IMU-modeled vs. optoelectronic-modeled joint angle outcomes for gait. Outcomes are range of motion (ROM), mean standard deviation (meanSD), local 319 
divergence exponent (λmax), detrended fluctuation analysis scaling exponent for range of motion (DFAα), and sample entropy (SaEn). Validity metrics are intraclass correlation 320 
coefficients (ICC2,1), root mean square difference (RMSD), coefficient of variation of the optoelectronic mean (CVmean), IMU–optoelectronic bias, and 95% limits of agreement 321 
(LOA95%). Values are group means [95% confidence intervals]. Highlights represent excellent (dark green: ICC2,1 ≥ 0.75), good (green: 0.60 ≤ ICC2,1 < 0.75), fair (yellow: 0.40 322 
≤ ICC2,1 < 0.60), and poor (orange: ICC2,1 < 0.40) consistency. Asterisks identify significant bias (95% confidence interval did not cross zero). 323 

 Angle ICC2,1 RMSD CVmean Bias LOA95%  
Lower Upper 

ROM Trunk FE 0.13 [-0.11,0.35] 2.5 [2.1,2.9] 26.1 [22.3,29.8] -1.3 [-1.8,-0.8] * -5.4 [-5.9,-4.9] 2.8 [2.3,3.3] 
Trunk AA 0.48 [0.28,0.64] 7.8 [7.0,8.6] 41.3 [38.3,44.4] -7.0 [-7.8,-6.2] * -13.6 [-14.3,-12.8] -0.5 [-1.3,0.3] 
Trunk IE 0.85 [0.77,0.90] 7.7 [6.8,8.6] 38.3 [34.8,41.7] -6.7 [-7.6,-5.8] * -14.1 [-15.0,-13.2] 0.7 [-0.2,1.6] 
Pelvis FE 0.04 [-0.20,0.27] 8.5 [7.8,9.3] 60.5 [56.8,64.1] -7.9 [-8.7,-7.1] * -14.4 [-15.2,-13.6] -1.4 [-2.2,-0.6] 
Pelvis AA 0.09 [-0.14,0.32] 4.1 [3.6,4.6] 85.1 [69.5,100.7] 3.3 [2.7,3.9] * -1.5 [-2.0,-0.9] 8.1 [7.5,8.7] 
Pelvis IE 0.84 [0.75,0.90] 2.0 [1.7,2.4] 14.8 [12.1,17.6] -0.5 [-0.9,0.0] * -4.4 [-4.9,-3.9] 3.5 [3.0,4.0] 
Hip FE 0.84 [0.75,0.90] 2.8 [2.4,3.3] 5.0 [3.8,6.1] 0.1 [-0.6,0.8] -5.5 [-6.2,-4.8] 5.7 [5.0,6.4] 
Hip AA 0.24 [-0.01,0.45] 8.5 [7.5,9.6] 44.8 [36.9,52.7] 6.8 [5.5,8.0] * -3.5 [-4.9,-2.3] 17.1 [15.8,18.3] 
Hip IE -0.11 [-0.35,-0.13] 4.8 [4.2,5.4] 36.9 [30.4,43.4] 0.4 [-0.7,1.6] -9.1 [-10.2,-7.9] 9.9 [8.7,11.0] 
Knee FE 0.26 [0.02,0.47] 6.9 [5.9,7.9] 8.8 [7.2,10.3] -1.4 [-3.0,0.2] -14.7 [-16.4,13.1] 11.9 [10.3,13.5] 
Ankle FE 0.76 [0.64,0.85] 4.7 [4.1,5.4] 12.4 [10.3,14.5] -1.2 [-2.3,-0.1] * -10.3 [-11.4,-9.2] 7.8 [6.7,8.9] 
Ankle AA 0.10 [-0.14,0.34] 8.4 [7.2,9.6] 33.0 [26.6,39.3] 3.1 [1.2,5.0] * -12.3 [-14.2,-10.4] 18.5 [16.6,20.3] 

meanSD  Trunk FE 0.63 [0.46,0.75] 0.29 [0.25,0.34] 17.8 [14.1,21.6] 0.07 [0.00,0.14] * -0.49 [-0.56,-0.42] 0.63 [0.56,0.70] 
Trunk AA 0.79 [0.68,0.86] 0.18 [0.15,0.22] 10.9 [8.6,13.1] 0.02 [-0.02,0.07] -0.34 [-0.38,-0.29] 0.38 [0.34,0.43] 
Trunk IE 0.80 [0.70,0.87] 0.60 [0.54,0.66] 36.3 [33.6,39.1] -0.52 [-0.59,-0.45] * -1.10 [-1.17,-1.03] 0.06 [-0.01,0.13] 
Pelvis FE 0.54 [0.35,0.68] 0.29 [0.25,0.34] 34.7 [28.4,41.0] 0.22 [0.18,0.27] * -0.16 [-0.21,-0.11] 0.60 [0.56,0.65] 
Pelvis AA 0.53 [0.34,0.68] 0.31 [0.27,0.34] 27.3 [24.4,30.2] -0.26 [-0.30,-0.22] * -0.58 [-0.61,-0.54] 0.05 [0.01,0.09] 
Pelvis IE 0.64 [0.48,0.76] 0.28 [0.23,0.32] 19.7 [15.1,24.2] 0.20 [0.15,0.24] * -0.19 [-0.242,-0.15] 0.59 [0.54,0.63] 
Hip FE 0.80 [0.69,0.87] 0.23 [0.20,0.26] 17.5 [14.4,20.6] 0.16 [0.12,0.20] * -0.16 [-0.20,-0.12] 0.48 [0.44,0.52] 
Hip AA 0.70 [0.56,0.81] 0.14 [0.12,0.16] 12.6 [10.1,15.0] 0.06 [0.03,0.09] * -0.18 [-0.21,-0.15] 0.30 [0.27,0.33] 
Hip IE 0.69 [0.54,0.80] 0.20 [0.17,0.23] 12.5 [9.9,15.1] 0.10 [0.06,0.14] * -0.24 [-0.28,-0.20] 0.44 [0.40,0.48] 
Knee FE 0.48 [0.27,0.65] 0.40 [0.34,0.46] 20.7 [15.6,25.9] 0.19 [0.10,0.27] * -0.51 [-0.60,-0.43] 0.89 [0.80,0.97] 
Ankle FE 0.68 [0.53,0.79] 0.61 [0.55,0.66] 50.0 [43.5,56.5] 0.56 [0.50,0.62] * 0.10 [-0.04,0.16] 1.02 [0.97,1.08] 
Ankle AA 0.24 [0.00,0.46] 0.38 [0.32,0.43] 25.6 [20.7,30.5] 0.20 [0.13,0.28] * -0.42 [-0.49,-0.34] 0.83 [0.75,0.90] 

λmax  Trunk FE 0.72 [0.58,0.82] 0.54 [0.48,0.60] 14.3 [12.3,16.2] 0.44 [0.37,0.52] * -0.18 [-0.25,-0.10] 1.06 [0.99,1.14] 
Trunk AA 0.85 [0.77,0.91] 0.40 [0.36,0.44] 10.5 [9.3,11.7] 0.36 [0.32,0.40] * 0.04 [-0.00,0.08] 0.69 [0.65,0.72] 
Trunk IE 0.59 [0.40,0.73] 0.34 [0.29,0.39] 6.5 [5.3,7.7] -0.23 [-0.29,-0.17] * -0.73 [-0.79,-0.67] 0.27 [0.21,0.33] 
Pelvis FE 0.72 [0.57,0.82] 0.72 [0.65,0.78] 20.4 [18.2,22.5] 0.65 [0.58,0.73] * 0.07 [-0.00,0.14] 1.24 [1.17,1.31] 
Pelvis AA 0.79 [0.67,0.86] 0.34 [0.30,0.39] 9.1 [7.5,10.7] 0.24 [0.18,0.30] * -0.25 [-0.31,-0.19] 0.73 [0.67,0.79] 
Pelvis IE 0.67 [0.51,0.78] 0.22 [0.19,0.25] 3.9 [3.1,4.7] -0.04 [-0.09,0.01] -0.47 [-0.52,-0.42] 0.39 [0.34,0.44] 
Hip FE 0.87 [0.80,0.92] 0.20 [0.17,0.22] 4.2 [3.5,4.9] -0.04 [-0.09,0.01] -0.42 [-0.47,-0.37] 0.34 [0.29,0.39] 
Hip AA 0.78 [0.66,0.86] 0.31 [0.28,0.34] 8.4 [7.5,9.4] 0.27 [0.23,0.30] * -0.02 [-0.05,0.02] 0.56 [0.52,0.59] 
Hip IE 0.75 [0.62,0.84] 0.44 [0.39,0.49] 12.7 [10.9,14.5] 0.38 [0.33,0.43] * -0.06 [-0.11,0.00] 0.82 [0.77,0.87] 
Knee FE 0.74 [0.61,0.84] 0.40 [0.34,0.46] 7.4 [5.9,8.9] 0.20 [0.12,0.28] * -0.48 [-0.56,-0.40] 0.88 [0.79,0.96] 
Ankle FE 0.74 [0.60,0.83] 0.45 [0.41,0.50] 13.0 [11.4,14.5] 0.40 [0.35,0.45] * -0.02 [-0.07,0.03] 0.82 [0.77,0.87] 
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Ankle AA 0.37 [0.14,0.56] 1.17 [1.10,1.25] 51.1 [45.9,56.4] 1.13 [1.05,1.21] * 0.49 [0.41,0.56] 1.77 [1.69,1.85] 
DFAα  Trunk FE 0.40 [0.18,0.58] 0.21 [0.18,0.24] 22.7 [17.2,28.2] -0.03 [-0.08,0.02] -0.44 [-0.49,-0.39] 0.38 [0.33,0.43] 

Trunk AA 0.27 [0.04,0.48] 0.19 [0.16,0.22] 18.7 [14.8,22.6] -0.05 [-0.09,0.00] -0.42 [-0.46,-0.37] 0.32 [0.28,0.37] 
Trunk IE 0.65 [0.49,0.76] 0.17 [0.15,0.20] 16.6 [13.0,20.2] -0.00 [-0.04,0.04] -0.34 [-0.38,-0.30] 0.34 [0.30,0.38] 
Pelvis FE 0.36 [0.14,0.54] 0.25 [0.21,0.29] 21.9 [17.9,25.8] -0.11 [-0.16,-0.06] * -0.55 [-0.60,-0.49] 0.33 [0.27,0.38] 
Pelvis AA 0.18 [-0.06,0.40] 0.23 [0.20,0.27] 28.6 [22.2,35.0] 0.04 [-0.01,0.10] -0.41 [-0.47,-0.36] 0.50 [0.44,0.55] 
Pelvis IE 0.46 [0.25,0.63] 0.16 [0.14,0.19] 17.6 [13.3,21.9] 0.03 [-0.01,0.06] -0.29 [-0.33,-0.25] 0.34 [0.30,0.38] 
Hip FE 0.50 [0.30,0.66] 0.20 [0.17,0.23] 21.0 [16.8,25.3] -0.02 [-0.06,0.03] -0.41 [-0.46,-0.36] 0.38 [0.33,0.43] 
Hip AA 0.37 [0.14,0.56] 0.23 [0.20,0.27] 21.3 [17.4,25.1] -0.07 [-0.12,-0.01] * -0.50 [-0.56,-0.45] 0.37 [0.32,0.43] 
Hip IE 0.13 [-0.12,0.36] 0.24 [0.21,0.27] 26.7 [21.8,31.6] -0.04 [-0.10,0.02] -0.51 [-0.56,-0.45] 0.43 [0.37,0.48] 
Knee FE 0.43 [0.21,0.61] 0.20 [0.17,0.23] 20.0 [16.1,23.9] 0.02 [-0.03,0.07] -0.37 [-0.42,-0.32] 0.41 [0.36,0.46] 
Ankle FE 0.62 [0.44,0.75] 0.16 [0.13,0.18] 17.2 [13.4,21.0] 0.02 [-0.02,0.06] -0.29 [-0.33,-0.25] 0.33 [0.29,0.37] 
Ankle AA -0.05 [-0.29,0.20] 0.31 [0.35,0.26] 35.9 [28.2,43.7] 0.12 [0.05,0.19] * -0.44 [-0.51,-0.38] 0.68 [0.61,0.75] 

SaEn  Trunk FE 0.56 [0.38,0.70] 0.18 [0.15,0.20] 17.0 [13.8,20.2] 0.02 [-0.02,0.06] -0.33 [-0.37,-0.29] 0.36 [0.32,0.41] 
Trunk AA 0.61 [0.44,0.74] 0.19 [0.16,0.21] 29.8 [23.3,36.3] 0.15 [0.13,0.18] * -0.05 [-0.08,-0.03] 0.36 [0.34,0.39] 
Trunk IE 0.48 [0.28,0.64] 0.10 [0.08,0.12] 16.1 [12.3,19.9] 0.04 [0.01,0.06] * -0.15 [-0.17,-0.13] 0.22 [0.20,0.24] 
Pelvis FE 0.05 [-0.19,0.28] 0.33 [0.29,0.37] 49.2 [40.8,57.6] 0.28 [0.23,0.32] * -0.09 [-0.13,-0.04] 0.64 [0.59,0.68] 
Pelvis AA 0.22 [-0.01,0.43] 0.41 [0.36,0.47] 31.6 [28.1,35.2] -0.34 [-0.39,-0.28] * -0.82 [-0.87,-0.76] 0.14 [0.09,0.20] 
Pelvis IE 0.64 [0.48,0.76] 0.24 [0.21,0.27] 63.1 [47.9,78.4] 0.19 [0.15,0.22] * -0.11 [-0.14,-0.07] 0.48 [0.45,0.52] 
Hip FE 0.44 [0.23,0.62] 0.05 [0.04,0.06] 17.9 [14.3,21.4] 0.04 [0.03,0.04] * -0.04 [-0.05,-0.03] 0.11 [0.10,0.12] 
Hip AA 0.17 [-0.08,0.39] 0.15 [0.13,0.17] 23.5 [20.0,27.0] -0.09 [-0.12,-0.06] * -0.33 [-0.36,-0.30] 0.15 [0.12,0.18] 
Hip IE -0.12 [-0.35,0.12] 0.25 [0.22,0.29] 21.3 [17.2,25.4] -0.04 [-0.10,-0.02] * -0.53 [-0.59,-0.47] 0.46 [0.40,0.52] 
Knee FE 0.74 [0.61,0.83] 0.07 [0.05,0.08] 16.5 [12.8,20.2] -0.02 [-0.04,-0.01] * -0.14 [-0.16,-0.13] 0.10 [0.08,0.11] 
Ankle FE 0.46 [0.24,0.63] 0.13 [0.11,0.14] 24.6 [20.2,29.0] 0.10 [0.08,0.12] * -0.06 [-0.08,-0.04] 0.26 [0.24,0.28] 
Ankle AA 0.10 [-0.14,0.34] 0.19 [0.16,0.22] 26.8 [22.1,31.6] -0.03 [-0.08,-0.01] * -0.40 [-0.44,-0.35] 0.34 [0.29,0.38] 

FE: flexion/extension; AA: abduction/adduction; IE: internal/external rotation 324 
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Figure 3. Bland-Altman plots of range of motion (ROM) of trunk, pelvis, and lower-limb joint angles for the optoelectronic-
driven (OPT) and IMU-driven biomechanical models of constant-speed treadmill gait. Mean bias (blue line) and 95% limits of 
agreement (red lines) are shown. Values are in degrees (°). Angles include flexion/extension (FE), abduction/adduction (AA), and 
internal/external rotation (IE). 
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Figure 4. Bland-Altman plots of mean standard deviation (meanSD) of trunk, pelvis, and lower-limb joint angles for the 
optoelectronic-driven (OPT) and IMU-driven biomechanical models of constant-speed treadmill gait. Mean bias (blue line) and 
95% limits of agreement (red lines) are shown. Values are in degrees (°). Angles include flexion/extension (FE), 
abduction/adduction (AA), and internal/external rotation (IE). 
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Figure 5. Bland-Altman plots of local divergence exponent (λmax) of trunk, pelvis, and lower-limb joint angles for the 
optoelectronic-driven (OPT) and IMU-driven biomechanical models of constant-speed treadmill gait. Mean bias (blue line) and 
95% limits of agreement (red lines) are shown. Values are in arbitrary units. Angles include flexion/extension (FE), 
abduction/adduction (AA), and internal/external rotation (IE). 
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Figure 6. Bland-Altman plots of detrended fluctuation analysis scaling exponent (DFAα) of range of motion of trunk, pelvis, and 
lower-limb joint angles for the optoelectronic-driven (OPT) and IMU-driven biomechanical models of constant-speed treadmill 
gait. Mean bias (blue line) and 95% limits of agreement (red lines) are shown. Values are in arbitrary units. Angles include 
flexion/extension (FE), abduction/adduction (AA), and internal/external rotation (IE). 
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Figure 7. Bland-Altman plots of sample entropy (SaEn) of trunk, pelvis, and lower-limb joint angles for the optoelectronic-driven 
(OPT) and IMU-driven biomechanical models of constant-speed treadmill gait. Mean bias (blue line) and 95% limits of 
agreement (red lines) are shown. Values are in arbitrary units. Angles include flexion/extension (FE), abduction/adduction (AA), 
and internal/external rotation (IE). 

 

3.2 IMU-model sensitivity 

 Precise descriptives (means, 95% confidence intervals) and statistical effects (p-values) 

for each outcome can be found in Supplementary material (Tables S1 and S2). Since consistency 

was generally poor–moderate for DFAα and SaEn, indicating a lack of acceptable concurrent 

validity, the sensitivity of these outcomes was not explored.  

 ROM (Figure 8). Speed effects: The models detected similar responses relative to 

preferred-speed gait, with decreased ROM of trunk AA, trunk IE, hip FE, hip IE, and ankle FE at 
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70% preferred speed, and increased ROM of trunk AA, trunk IE, pelvis IE, hip angles, and ankle 

FE at 130% preferred speed. Differing responses, where only one model detected a significant 

change, were found at 70% preferred speed for pelvis angles, hip AA, knee FE, and ankle AA, 

and at 130% preferred speed for pelvis FE, pelvis AA, and ankle AA. The changes detected, 

however, followed the same trends of decreased ROM at 70% preferred speed and increased 

ROM at 130% preferred speed. Swing effects: The models also detected similar changes relative 

to preferred arm swing during active swing, with increased ROM of pelvis IE and hip FE, 

decreased ROM of knee FE, and no change in ROM of trunk FE, trunk AA, pelvis FE, pelvis AA, 

hip AA, hip IE, ankle FE, and ankle AA. With arms bound, both models detected decreased 

ROM of trunk IE and no change for hip FE, hip IE, ankle FE, and ankle AA.  

 meanSD (Figure 9). Speed effects: The models detected similar non-responses to speed 

changes for meanSD of trunk FE, trunk IE, ankle FE, and ankle AA. However, optoelectronic-

based model increases in meanSD at 70% preferred speed (trunk AA, pelvis FE, pelvis AA, hip 

FE, hip AA, knee FE) and at 130% preferred speed (pelvis IE) went undetected by the IMU-

based model. Swing effects: Relative to preferred arm swing, the models detected similar 

increases in meanSD (trunk AA, pelvis AA, pelvis IE, hip AA, hip IE) and non-responses (trunk 

FE, hip FE, knee FE) during active arm swing, as well as similar non-responses with arms bound 

(trunk FE, pelvis FE, pelvis AA, and all hip, knee, and ankle angles). Optoelectronic-detected 

increases in meanSD of trunk AA and IE and decreases for pelvis IE with arms bound went 

undetected by the IMU-based model. 

 λmax (Figure 10). Speed effects: The models detected similar responses to speed changes 

in λmax of joint angles with few exceptions. Both models detected increases in λmax at 70% 

preferred speed (trunk FE, trunk AA, pelvis-down angles), decreases in λmax at 130% preferred 
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speed (trunk FE, pelvis FE, pelvis AA, hip AA, hip IE, ankle AA), and no response in λmax of 

knee FE at 130% preferred speed. Swing effects: The models also detected similar λmax responses 

relative to preferred arm swing, with increases in trunk FE, pelvis angles, hip AA, hip IE, and 

ankle FE during active swing, and decreases in trunk IE, but increases in pelvis IE, with arms 

bound. Similar non-responses in λmax of ankle AA during active swing and of trunk FE, hip FE, 

hip AA, knee FE, ankle FE, and ankle AA with arms bound were also seen. 

 
Figure 8. Boxplots of range of motion (ROM) of trunk, pelvis, and lower-limb joint angles for the optoelectronic-driven (blue) 
and IMU-driven (red) biomechanical models of constant-speed treadmill gait. Conditions displayed on the horizontal axis are 
preferred speed and arm swing (100), 70% preferred speed (70), 130% preferred speed (130), active arm swing (AS), and arms 
bound (AB). Red crosses are outliers > 2 * interquartile range. Angles include flexion/extension (FE), abduction/adduction (AA), 
and internal/external rotation (IE). 
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Figure 9. Boxplots of mean standard deviation (meanSD) of trunk, pelvis, and lower-limb joint angles for the optoelectronic-
driven (blue) and IMU-driven (red) biomechanical models of constant-speed treadmill gait. Conditions displayed on the 
horizontal axis are preferred speed and arm swing (100), 70% preferred speed (70), 130% preferred speed (130), active arm 
swing (AS), and arms bound (AB). Red crosses are outliers > 2 * interquartile range. Angles include flexion/extension (FE), 
abduction/adduction (AA), and internal/external rotation (IE). 
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Figure 10. Boxplots of local divergence exponent (λmax) of trunk, pelvis, and lower-limb joint angles for the optoelectronic-driven 
(blue) and IMU-driven (red) biomechanical models of constant-speed treadmill gait. Conditions displayed on the horizontal axis 
are preferred speed and arm swing (100), 70% preferred speed (70), 130% preferred speed (130), active arm swing (AS), and 
arms bound (AB). Red crosses are outliers > 2 * interquartile range. Angles include flexion/extension (FE), abduction/adduction 
(AA), and internal/external rotation (IE). 

4. Discussion 

4.1 Validity of IMU-modeled joint angle timeseries  

Using a full-body biomechanical model with muscle-actuated lower limbs [31] to analyze 

several 7-minute conditions of gait kinematics, our findings confirm that driving this model with 

IMUs (using the OpenSense open-source toolkit for OpenSim) produces accurate joint angle 

timeseries relative to the optoelectronic-driven model, with the exception of ankle inversion. 

RMSD across all gait speed and arm swing conditions averaged 5.3°; when ankle inversion was 

excluded from this calculation, RMSD averaged 4.8°, an accuracy viewed as acceptable for 

many clinical applications [27]. This amount of accuracy and the range in RMSD among 
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individual joints (1.7–7.5°) agrees with recent findings from the developers [13,14]. One 

observation from our ensemble-averaged lower-limb joint angles (Figure 2) was that 

optoelectronic–IMU differences were most notable in the non-sagittal plane during swing (e.g., 

hip abduction, hip rotation, and ankle inversion), potentially due to the relatively small ROMs of 

these angles in combination with the higher segmental velocities during swing. Nonetheless, we 

report an accuracy for hip rotation (pooled RMSD of 6.2°) that improved upon the developers’ 

findings (10–12°). Because allowing ankle inversion/eversion in addition to 

dorsiflexion/plantarflexion did not affect the inverse kinematics solution for hip rotation (see, for 

example, Figure S1), we believe our improvement in accuracy is attributable to omitting 

magnetometer data when using Madgwick’s gradient-descent fusion algorithm [19] and, instead, 

identifying negative (< -0.0010 rad/s) and positive (> 0.0010 rad/s) linear orientation drifts and 

detrending these offline. Extending previous findings, we also found RMSDs of IMU-modeled 

trunk and pelvis angles (1.7–6.6°) that were similar to those of the joints in the lower limb. Thus, 

with the notable exception of ankle inversion/eversion, our findings indicate that joint angle 

timeseries for the trunk and below can be estimated on average with acceptable accuracy during 

walking over a wide range of walking speeds and arm swing amplitudes. 

4.2 Validity of IMU-modeled joint angle outcomes 

 The concurrent validity of the joint angle timeseries, however, did not extend to the 

discrete outcomes to the same extent. For ROM, as reported by Beange et al. [48,49], 

optoelectronic–IMU consistency was excellent in the primary plane of movement (trunk rotation, 

pelvis rotation, hip flexion, ankle dorsiflexion) with RMSDs similar to the corresponding 

timeseries (ROM: 2.0–7.7°; timeseries: 1.9–6.9°), but consistency was often poor in the non-

primary movement planes. Therefore, measurement consistency of ROM for the secondary and 
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tertiary planes was not improved by using a biomechanically constrained kinematic model. 

RMSDs for the secondary and tertiary planes (2.5–8.5°) were comparable to those of the primary 

movement plane, confirming the findings of Beange et al. [48,49] and likely due to the lower 

ROMs about the secondary and tertiary planes; future IMU-modelling work of lower-limb joint 

kinematics could investigate whether consistency is higher in locomotor tasks with similar 

segmental velocities that include larger ROMs in the frontal and transverse planes, such as 

walking with side-stepping and/or turning. ROM was also below proposed limits of agreement of 

±10° [50] for only 5 of the 12 degrees of freedom we analyzed, with underestimation biases 

(trunk rotation and ankle flexion) partly responsible. Together, these findings show that 

acceptable validity of a joint angle timeseries does not necessarily translate to acceptable validity 

in the discrete outcomes of that timeseries. Specifically, our IMU model estimates joint angle 

ROM accurately, but has inconsistencies in the non-primary movement planes and limitations in 

absolute agreement. 

For motor variability outcomes, consistency was best for λmax and meanSD, reaching 

good–excellent levels for nearly all degrees of freedom with RMSDs of 0.22–0.72° and 0.14–

0.61°, respectively. Our findings agree with the high optoelectronic–IMU consistency in λmax 

reported for repetitive spine flexion/extension [51] and support the concurrent validity of IMU-

based measurements of joint local dynamic stability. For the first time, we demonstrate high 

consistency and accuracy for joint angles with low range of motion and beyond the primary 

plane of movement, providing a new validated model for investigating magnitude of variability 

and local dynamic stability in tridimensional joint motion from stride to stride. Caution is 

advised regarding the absolute agreement of our outcomes since we were unable to identify 

limits of agreement in the literature for comparison and since the IMU-based model biases 
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showed that λmax and meanSD were each underestimated for trunk rotation but overestimated for 

hip, knee, and ankle angles. 

DFAα and SaEn were not sufficiently consistent to be considered valid in their present 

computational form (DFAα ICC2,1: -0.05–0.65; SaEn ICC2,1: -0.12–0.74). DFAα inconsistencies 

may be partly derived from ROM inconsistencies since we investigated fluctuations of this 

discrete metric. This is supported by our finding that the only two angles with good consistency 

in DFAα (trunk rotation, ankle dorsiflexion) also had excellent consistency in ROM, indicating 

that improvement in calculation of ROM is likely to produce more valid analyses of fluctuation 

persistence. SaEn inconsistencies may be due to changes in the information of joint angles in the 

IMU-driven model. The calculation of this metric for continuous series of joint angles is 

sensitive to the sampling frequency, the tolerance ratio r, and the embedding dimension m [44]. 

We resampled IMU-based joint angles to compensate for sampling frequency and selected r and 

m values which produced stable measurements in slow and fast gait [43]. However, specific 

tuning of SaEn parameters to IMU-based kinematic models is likely needed. Alternatively, 

calculation of SaEn may be more robust to tuning parameters by analyzing the discrete ROM 

series rather than the continuous joint angle series [44], but this also relies on improving the 

estimation of ROM. Therefore, use of IMU-based biomechanical models to investigate the 

persistence and regularity of joint angle fluctuations in gait requires improvements to the 

estimation of ROM and the identification of appropriate SaEn calculation parameters for IMU-

derived joint angles.  

4.3 Sensitivity of IMU-modeled joint angle outcomes to within-participant effects 
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 Our results show, for the first time, that joint angle outcomes estimated from an IMU-

driven biomechanical model were also sensitive to within-participant responses detected by an 

optoelectronic-driven model in the majority of cases. Relative to gait at preferred speed and with 

preferred arm swing, responses to changes in speed and arm swing amplitude were detected 

identically between models for 28/48 comparisons for ROM, 29/48 comparisons for meanSD, 

and 35/48 comparisons for λmax. Model-detected responses are in agreement with several 

previous findings, including increases in joint ROM with fast speed and decreases with slow 

speed [52], increases in SD of trunk kinematics and meanSD of lower-limb angles with active 

arm swing [36,37], and increases in λmax of hip abduction with active arm swing [37]. Although 

our trunk motion responses appear to disagree with reported increases in meanSD with fast speed 

[33], increases in λmax with fast speed [34], and decreases in λmax with active arm swing [35], 

differences can be attributed to the reference frame of the trunk (relative to the pelvis in our 

study vs. relative to ground in [33]) and to the sensitivity of the λmax state-space to different 

inputs [53] (time-delayed joint angles in our study vs. velocities and accelerations [34] vs. time-

delayed velocities [35]). In the minority of cases where our optoelectronic and IMU models 

detected different responses, directionality never disagreed, and differences were mostly due to 

the IMU-based model detecting no response when a change was detected by the optoelectronic-

based model. In these cases, there were no statistically significant changes for the IMU-based 

model, but all means moved in the same direction as the optoelectronic-based model (Tables S1 

and S2). As the probability of this due to chance is very low, it seems that IMU-modeled 

responses had smaller effect sizes than this study was powered to detect, due to smaller changes 

in magnitude and/or larger group variance. Furthermore, the excess limits of agreement for some 

ROMs did not influence sensitivity of the IMU model, as responses in ROM for angles 
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exceeding limits of ±10° [50] were the same in many cases during gait at fast speed (trunk 

abduction, trunk rotation, ankle dorsiflexion), at slow speed (trunk abduction, trunk rotation, hip 

abduction, ankle dorsiflexion), with active arm swing (trunk abduction, pelvis flexion, hip 

abduction, knee flexion, ankle dorsiflexion, ankle inversion), and with bound arms (trunk 

rotation, ankle flexion, ankle inversion). Together, these findings show that the IMU-driven 

biomechanical model is sensitive to within-group responses in ROM, meanSD, and λmax, and 

suggest that larger sample sizes may further improve sensitivity by compensating for smaller 

effect sizes. 

4.4 Limitations 

 IMU-driven biomechanical simulations of movement are a new area for investigation and 

have important limitations. In our study, these were specific to the demographics of our sample, 

the biomechanical model, and how gait was studied. As a first step for modelling motor 

variability in gait, we recruited a convenience sample of healthy young adult males and females 

whose average BMI was in the “normal” range. Our motivation for investigating motor 

variability in gait, however, is to investigate stride-to-stride control of older adults as it relates to 

fall risk [3]. Confirmation of validity and sensitivity of an IMU-driven biomechanical model is 

still needed in older populations living with and without neurological conditions.  

To mitigate differences attributed to different initial model poses in our evaluation of 

validity, we decided to offset the optoelectronic model to match the standing pose of the IMU 

model at the first frame, similar to the approach of Al Borno et al. [14]. This is unrealistic for 

situations where an optoelectronic system is unavailable to establish the initial IMU model pose. 

Adding the average correction (3.8° [14]) to the RMSD differences would produce differences 
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that exceed limits tolerable for clinical applications [27]. However, ROM and motor variability 

were unaffected by this offset, and further IMU calibration procedures [54] are unlikely to affect 

validity or sensitivity of these measures. Thus, we expect that our conclusions on the validity of 

our outcomes can be generalized to situations where only IMU sensors are available. 

Finally, we investigated performance of the IMU-driven model during treadmill gait, 

where stride-to-stride variability is lower than in overground gait [55,56]. Treadmills allow for 

analyses at constant speed and over a large number of continuous strides; for example, more than 

100 strides are needed to reliably quantify SD of stride time and λmax of tridimensional trunk 

acceleration [57]. Large numbers of strides can be recorded in optoelectronic-based overground 

studies when gait involves turning and strides are discontinuous [58] but calculation of local 

dynamic stability requires continuous timeseries. Suitability of IMU-driven biomechanical 

models for joint kinematic evaluations in overground locomotion is promising [13,14,25] but 

should be confirmed for evaluations of stride-to-stride control. 

5. Conclusion 

 In summary, excluding ankle inversion, IMU-based joint angle timeseries were 

acceptably accurate from the trunk down, ROM was acceptably consistent and accurate in the 

primary plane of motion, and magnitude of variability and local dynamic stability were 

acceptably consistent and accurate in all planes of motion. Validity was supported by the 

sensitivity of the IMU model to gait speed and arm swing amplitude-related responses in ROM, 

magnitude of variability, and local dynamic stability in the majority of cases. However, IMU-

modeled estimates of ROM fluctuation persistence and of angle regularity were not acceptably 

consistent or accurate. We conclude that, for moderate-duration walking at slow and fast speeds, 
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the IMU-driven, magnetometer-free, open-source biomechanical model used in this study 

provides valid estimates of joint kinematics, stride-to-stride magnitude of variability, and stride-

to-stride local dynamic stability which are also sensitive to within-participant responses. This 

provides a new way to evaluate biomechanical control of walking outside of the lab and clinic, a 

step towards better predicting falls in aging adults. 
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